MATH 810: PROJECT V
 SOLUTIONS

(1) Exercise 13.1/p. 104

Hint: Consider $\nu^{ \pm}$, so that $\nu=\nu^{+}-\nu^{-}$and show that for the measures $\nu^{ \pm}$, one has $\nu^{+} \ll \mu$ and $\nu^{-} \ll \mu$.

Solution:

Consider the Hahn decomposition of $\nu X=E \cup F$, where E and F are the negative and the positive sets respectively. Take a measurable set A, so that $\mu(A)=0$. It follows that $\mu(A \cap E)=\mu(A \cap F)=0$.

We have by $\nu \ll \mu, \nu(A \cap E)=\nu(A \cap F)=0$. Thus,

$$
\nu^{+}(A)=\nu(A \cap E)=0, \nu^{-}(A)=\nu(A \cap F)=0
$$

Thus $\nu^{ \pm} \ll \mu$. By Radon-Nykodim,

$$
\nu^{ \pm}(A)=\int_{A} f^{ \pm} d \mu
$$

Finally,

$$
\nu(A)=\nu^{+}(A)-\nu^{-}(A)=\int\left(f^{+}-f^{-}\right) d \mu=\int_{A} f d \mu
$$

(2) Prove the following extension of Exercise 15.19. For a function g, measurable with respect to $\mathcal{A} \times \mathcal{B}$, prove that

$$
\left\|\|g\|_{L^{r}\left(d \nu_{y}\right)}\right\|_{L^{q}\left(d \mu_{x}\right)} \leq\| \| g\left\|_{L^{q}\left(d \mu_{x}\right)}\right\|_{L^{r}\left(d \nu_{x}\right)}
$$

or equivalently

$$
\left(\int\left(\int|g(x, y)|^{r} d \nu(y)\right)^{q / r} d \mu(x)\right)^{1 / q} \leq\left(\int\left(\int|g(x, y)|^{q} d \mu(x)\right)^{r / q} d \mu(x)\right)^{1 / r}
$$

whenever $0<r \leq q \leq \infty$.
Hint: Note that Exercise 15.19 corresponds to the case $r=1$. Here, reduce to Exercise 15.19, with $p=\frac{q}{r} \geq 1$.
Solution:
When $q<\infty$, we have by Exercise 15.19

$$
\left(\int\left(\int|g(x, y)|^{r} d \nu(y)\right)^{q / r} d \mu(x)\right)^{r / q} \leq \int\left(\int|g(x, y)|^{q} d \mu(x)\right)^{r / q} d \nu(y)
$$

Raising both sides by $1 / r$, we obtain the desired inequality.
If $q=\infty, r<\infty$, we have for every x_{0}

$$
\left|g\left(x_{0}, y\right)\right|^{r} \leq \sup _{\substack{x \\ 1}}|g(x, y)|^{r}
$$

Integrating this in y gives us

$$
\left(\int\left|g\left(x_{0}, y\right)\right|^{r} d y\right)^{1 / r} \leq\left(\int \sup _{x}|g(x, y)|^{r} d y\right)^{1 / r}
$$

Taking essential supremum in x_{0} yields

$$
\left\|\|g\|_{L_{y}^{r}}\right\|_{L_{x}^{\infty}} \leq\| \| g\left\|_{L_{x}^{\infty}}\right\|_{L_{y}^{r}}
$$

as stated. For $q=\infty, r=\infty$, we have equality, as both norms are equal to $\|g\|_{L_{x y}^{\infty}}$.
(3) Prove the generalized Hölder's inequality. That is
whenever $1 \leq p_{1}, p_{2}, \ldots, p_{n} \leq \infty: \frac{1}{p_{1}}+\ldots \frac{1}{p_{n}}=1$.
Hint: The case $n=2$ is the standard Hölder's inequality. Then, argue by induction. Assuming that it is true for any $p_{1}, \ldots, p_{n-1}: \frac{1}{p_{1}}+\ldots \frac{1}{p_{n-1}}=1$, consider $1 \leq p_{1}, p_{2}, \ldots, p_{n} \leq \infty: \frac{1}{p_{1}}+\ldots \frac{1}{p_{n}}=1$. First, deal with the easy case $p_{n}=\infty$. For $p_{n}<\infty$, define $q_{n}: \frac{1}{q_{n}}+\frac{1}{p_{n}}=1$. By the standfard Hölder's

$$
\int\left|f_{1}(x)\right| \ldots\left|f_{n}(x)\right| d \mu \leq\left(\int\left(\left|f_{1}(x)\right| \ldots\left|f_{n-1}(x)\right|\right)^{q_{n}} d \mu\right)^{1 / q_{n}}\left\|f_{n}\right\|_{L^{p_{n}}}
$$

Note that $\frac{1}{p_{1}}+\ldots \frac{1}{p_{n-1}}=\frac{1}{q_{n}}$ and continue the chain of inequalities above.

Solution:

For $p_{n}=\infty$, we have

$$
\int\left|f_{1}(x)\right| \ldots\left|f_{n}(x)\right| d \mu \leq \sup _{\mid} f_{n}(x)\left|\int\right| f_{1}(x)|\ldots| f_{n-1}(x) \mid d \mu
$$

to which we apply the Hölder's inequality for $n-1$ functions. We obtain

$$
\int\left|f_{1}(x)\right| \ldots\left|f_{n}(x)\right| d \mu \leq\left\|f_{n}\right\|_{L^{\infty}}\left\|f_{1}\right\|_{L^{p_{1}}} \ldots\left\|f_{n-1}\right\|_{L^{p_{n-1}}}
$$

where $1=\frac{1}{p_{1}}+\ldots \frac{1}{p_{n-1}}$.
If $p_{n}<\infty$, we have

$$
\int\left|f_{1}(x)\right| \ldots\left|f_{n}(x)\right| d \mu \leq\left(\int\left(\left|f_{1}(x)\right| \ldots\left|f_{n-1}(x)\right|\right)^{q_{n}} d \mu\right)^{1 / q_{n}}\left\|f_{n}\right\|_{L^{p_{n}}}
$$

We apply the Hölder's with $1=\frac{1}{p_{1} / q_{n}}+\ldots+\frac{1}{p_{n-1} / q_{n}}$. We have

$$
\int\left(\left|f_{1}(x)\right| \ldots\left|f_{n-1}(x)\right|\right)^{q_{n}} d \mu \leq\left(\int\left|f_{1}\right|^{p_{1}}\right)^{q_{n} / p_{1}} \cdots\left(\int\left|f_{n-1}\right|^{p_{n-1}}\right)^{q_{n} / p_{n-1}}
$$

Thus raising to power $1 / q_{n}$,

$$
\left(\int\left(\left|f_{1}(x)\right| \ldots\left|f_{n-1}(x)\right|\right)^{q_{n}} d \mu\right)^{1 / q_{n}} \leq\left\|f_{1}\right\|_{L^{p_{1}}} \ldots\left\|f_{n-1}\right\|_{L^{p_{n-1}}}
$$

Putting everything together yields the estimate.
(4) Recall that $f * g(x)=\int_{R^{1}} f(y) g(x-y) d y$. Prove the Young's inequality

$$
\|f * g\|_{L^{q}} \leq\|f\|_{L^{p}}\|g\|_{L^{r}}
$$

whenever $1 \leq p, q, r<\infty$ and $1+\frac{1}{q}=\frac{1}{p}+\frac{1}{r}$.
Hint: Check that the conditions ensure that $\frac{p}{q}+\frac{p}{r^{\prime}}=1=\frac{r}{q}+\frac{r}{p^{\prime}}$ and hence, one can write

$$
|f * g(x)| \leq \int|f(y)|^{p / r^{\prime}}\left[|f(y)|^{p / q}|g(x-y)|^{r / q}\right]|g(x-y)|^{r / p^{\prime}} d y
$$

Note also $\frac{1}{r^{\prime}}+\frac{1}{q}+\frac{1}{p^{\prime}}=1$.

Solution:

Apply Hölder's inequality to the last estimate. We have

$$
\begin{aligned}
|f * g(x)| & \leq \int|f(y)|^{p / r^{\prime}}\left[|f(y)|^{p / q}|g(x-y)|^{r / q}\right]|g(x-y)|^{r / p^{\prime}} d y \leq \\
& \leq\left(\int|f(y)|^{p} d y\right)^{1 / r^{\prime}}\left(\int|f(y)|^{p}|g(x-y)|^{r} d y\right)^{1 / q}\left(\int|g(x-y)|^{r} d y\right)^{1 / p^{\prime}}= \\
& =\|f\|_{L^{p}}^{p / r^{\prime}}\|g\|_{L^{r}}^{r / p^{\prime}}\left(\int|f(y)|^{p}|g(x-y)|^{r} d y\right)^{1 / q} .
\end{aligned}
$$

Raising to power q and integrating in x yields

$$
\int|f * g(x)|^{q} \leq\|f\|_{L^{p}}^{q q^{p} / r^{\prime}}\|g\|_{L^{r}}^{q p^{\prime}} \iint|f(y)|^{p}|g(x-y)|^{r} d y d x .
$$

By Fubini's

$$
\begin{aligned}
\iint|f(y)|^{p}|g(x-y)|^{r} d y d x & =\int|f(y)|^{p}\left(\int|g(x-y)|^{r} d x\right) d y=\|g\|_{L^{r}}^{r} \int|f(y)|^{p} d y= \\
& =\|g\|_{L^{r}}^{r}\|f\|_{L^{p}}^{p} .
\end{aligned}
$$

Thus,

$$
\|f * g\|_{L^{q}}^{q} \leq\|f\|_{L^{p}}^{q p / r^{\prime}}\|g\|_{L^{r}}^{q r / p^{\prime}}\|g\|_{L^{r}}^{r}\|f\|_{L^{p}}^{p}=\|f\|_{L^{p}}^{p+q p / r^{\prime}}\|g\|_{L^{q}}^{r+q r / p^{\prime}}
$$

But according to the relations between $p, q, r, 1 / r^{\prime}=1 / p-1 / q, 1 / p^{\prime}=1 / r-$ $1 / q$. So,

$$
\begin{aligned}
p+q p / r^{\prime} & =p\left(1+q / r^{\prime}\right)=p(1+q(1 / p-1 / q))=q \\
r+q r / p^{\prime} & =r\left(1+q / p^{\prime}\right)=r(1+q(1 / r-1 / q))=q,
\end{aligned}
$$

whence

$$
\|f * g\|_{L^{q}}^{q} \leq\|f\|_{L^{p}}^{q}\|g\|_{L^{q}}^{q},
$$

as stated.

