MATH 810: PROJECT V

DUE: DEC. 9TH, 2014
(1) Exercise 13.1/p. 104

Hint: Consider $\nu^{ \pm}$, so that $\nu=\nu^{+}-\nu^{-}$and show that for the measures $\nu^{ \pm}$, one has $\nu^{+} \ll \mu$ and $\nu^{-} \ll \mu$.
(2) Prove the following extension of Exercise 15.19. For a function g, measurable with respect to $\mathcal{A} \times \mathcal{B}$, prove that

$$
\left\|\|g\|_{L^{r}\left(d \nu_{y}\right)}\right\|_{L^{q}\left(d \mu_{x}\right)} \leq\| \| g\left\|_{L^{q}\left(d \mu_{x}\right)}\right\|_{L^{r}\left(d \nu_{x}\right)}
$$

or equivalently

$$
\left(\int\left(\int|g(x, y)|^{r} d \nu(y)\right)^{q / r} d \mu(x)\right)^{1 / q} \leq\left(\int\left(\int|g(x, y)|^{q} d \mu(x)\right)^{r / q} d \mu(x)\right)^{1 / r}
$$

whenever $0<r \leq q \leq \infty$.
Hint: Note that Exercise 15.19 corresponds to the case $r=1$. Here, reduce to Exercise 15.19, with $p=\frac{q}{r} \geq 1$.
(3) Prove the generalized Hölder's inequality. That is

$$
\int\left|f_{1}(x)\right| \ldots\left|f_{n}(x)\right| d \mu \leq\left\|f_{1}\right\|_{L^{p_{1}}} \ldots\left\|f_{n}\right\|_{L^{p_{n}}}
$$

whenever $1 \leq p_{1}, p_{2}, \ldots, p_{n} \leq \infty: \frac{1}{p_{1}}+\ldots \frac{1}{p_{n}}=1$.
Hint: The case $n=2$ is the standard Hölder's inequality. Then, argue by induction. Assuming that it is true for any $p_{1}, \ldots, p_{n-1}: \frac{1}{p_{1}}+\ldots \frac{1}{p_{n-1}}=1$, consider $1 \leq p_{1}, p_{2}, \ldots, p_{n} \leq \infty: \frac{1}{p_{1}}+\ldots \frac{1}{p_{n}}=1$. First, deal with the easy case $p_{n}=\infty$. For $p_{n}<\infty$, define $q_{n}: \frac{1}{q_{n}}+\frac{1}{p_{n}}=1$. By the standfard Hölder's

$$
\int\left|f_{1}(x)\right| \ldots\left|f_{n}(x)\right| d \mu \leq\left(\int\left(\left|f_{1}(x)\right| \ldots\left|f_{n-1}(x)\right|\right)^{q_{n}} d \mu\right)^{1 / q_{n}}\left\|f_{n}\right\|_{L^{p_{n}}}
$$

Note that $\frac{1}{p_{1}}+\ldots \frac{1}{p_{n-1}}=\frac{1}{q_{n}}$ and continue the chain of inequalities above.
(4) Recall that $f * g(x)=\int_{R^{1}} f(y) g(x-y) d y$. Prove the Young's inequality

$$
\|f * g\|_{L^{q}} \leq\|f\|_{L^{p}}\|g\|_{L^{r}}
$$

whenever $1 \leq p, q, r<\infty$ and $1+\frac{1}{q}=\frac{1}{p}+\frac{1}{r}$.
Hint: Check that the conditions ensure that $\frac{p}{q}+\frac{p}{r^{\prime}}=1=\frac{r}{q}+\frac{r}{p^{\prime}}$ and hence, one can write

$$
|f * g(x)| \leq \int|f(y)|^{p / r^{\prime}}\left[|f(y)|^{p / q}|g(x-y)|^{r / q}\right]|g(x-y)|^{r / p^{\prime}} d y
$$

Note also $\frac{1}{r^{\prime}}+\frac{1}{q}+\frac{1}{p^{\prime}}=1$.

