MATH 810: PROJECT V DUE: DEC. 9TH, 2014

(1) Exercise 13.1/p. 104

Hint: Consider ν^{\pm} , so that $\nu = \nu^{+} - \nu^{-}$ and show that for the measures ν^{\pm} , one has $\nu^+ \ll \mu$ and $\nu^- \ll \mu$.

(2) Prove the following extension of Exercise 15.19. For a function q, measurable with respect to $\mathcal{A} \times \mathcal{B}$, prove that

$$|||g||_{L^{r}(d\nu_{y})}||_{L^{q}(d\mu_{x})} \leq |||g||_{L^{q}(d\mu_{x})}||_{L^{r}(d\nu_{x})}$$

or equivalently

$$\left(\int \left(\int |g(x,y)|^r d\nu(y)\right)^{q/r} d\mu(x)\right)^{1/q} \le \left(\int \left(\int |g(x,y)|^q d\mu(x)\right)^{r/q} d\mu(x)\right)^{1/r}$$

whenever $0 < r < q < \infty$.

Hint: Note that Exercise 15.19 corresponds to the case r = 1. Here, reduce to Exercise 15.19, with $p = \frac{q}{r} \ge 1$.

(3) Prove the generalized Hölder's inequality. That is

$$\int |f_1(x)| \dots |f_n(x)| d\mu \le ||f_1||_{L^{p_1}} \dots ||f_n||_{L^{p_n}},$$

whenever $1 \le p_1, p_2, \ldots, p_n \le \infty : \frac{1}{p_1} + \ldots \frac{1}{p_n} = 1$. **Hint:** The case n = 2 is the standard Hölder's inequality. Then, argue by induction. Assuming that it is true for any $p_1, \ldots, p_{n-1} : \frac{1}{p_1} + \ldots + \frac{1}{p_{n-1}} = 1$, consider $1 \le p_1, p_2, \ldots, p_n \le \infty$: $\frac{1}{p_1} + \ldots + \frac{1}{p_n} = 1$. First, deal with the easy case $p_n = \infty$. For $p_n < \infty$, define $q_n : \frac{1}{q_n} + \frac{1}{p_n} = 1$. By the standfard Hölder's

$$\int |f_1(x)| \dots |f_n(x)| d\mu \le \left(\int (|f_1(x)| \dots |f_{n-1}(x)|)^{q_n} d\mu \right)^{1/q_n} ||f_n||_{L^{p_n}}.$$

Note that $\frac{1}{p_1} + \dots + \frac{1}{p_{n-1}} = \frac{1}{q_n}$ and continue the chain of inequalities above. (4) Recall that $f * g(x) = \int_{R^1} f(y)g(x-y)dy$. Prove the Young's inequality

$$|f * g||_{L^q} \le ||f||_{L^p} ||g||_{L^r},$$

whenever $1 \le p, q, r < \infty$ and $1 + \frac{1}{q} = \frac{1}{p} + \frac{1}{r}$. **Hint:** Check that the conditions ensure that $\frac{p}{q} + \frac{p}{r'} = 1 = \frac{r}{q} + \frac{r}{p'}$ and hence, one can write

$$|f * g(x)| \le \int |f(y)|^{p/r'} [|f(y)|^{p/q} |g(x-y)|^{r/q}] |g(x-y)|^{r/p'} dy.$$

e also $\frac{1}{r} + \frac{1}{r} + \frac{1}{r} = 1$

Note also $\frac{1}{r'} + \frac{1}{q} + \frac{1}{p'} = 1$.