MATH 810: PROJECT IV
 DUE: DEC. 5TH 2017

(1) $12.8 /$ page 98
(2) $13.8 /$ page 105
(3) Prove that if $p, q: \frac{1}{p}+\frac{1}{q} \neq 1$, then, the inequality

$$
\begin{equation*}
\left|\int_{A} f(x) g(x) d x\right| \leq C\|f\|_{L^{p}(A)}\|g\|_{L^{q}(A)} \tag{1}
\end{equation*}
$$

cannot hold for any $C>0$, if $A=\mathbf{R}^{1}$ or $A=(0, \infty)$. On the other hand, prove (1) for $A=(0,1)$ and $p, q: \frac{1}{p}+\frac{1}{q} \geq 1$.
Hint: Scaling - apply the inequality to $f_{\lambda}(x):=f(\lambda x)$.
(4) $15.7 /$ page 142 .
(5) In 15.7/page 142: Find $p_{0} \in(1,2)$, so that $f \in L^{p}: p>p_{0}$ we have $\int_{0}^{1} f(x) g_{n}(x) d x \rightarrow 0$, while for $p<p_{0}$, we have an example $f \in L^{p}$, so that $\int_{0}^{1} f(x) g_{n}(x) d x$ does not converge to zero.
(6) 15.10/page 142

Hint: First show that it is enough to show the claim for a dense set of g, for example g is a bounded function in L^{q}, with compact support. Next, use that $f_{n} \rightarrow f$ a.e., means that $f_{n} \rightarrow f$ in measure on the support of g (which is compact set, with finite measure).
(7) $15.15 /$ page 143. Here, we do need finite measure space $\mu(X)<\infty$.

Hint: It is easy to see that if the sum is finite, then $f \in L^{p}(\mu)$. For the reverse direction, write

$$
\begin{aligned}
\int|f(x)|^{p} d \mu & =\int_{|f(x)|<1}|f(x)|^{p} d \mu+\sum_{n=0}^{\infty} \int_{|f(x)| \in\left[2^{n}, 2^{n+1}\right)}|f(x)|^{p} d \mu \sim \\
& \sim \int_{|f(x)|<1}|f(x)|^{p} d \mu+\sum_{n=0}^{\infty} 2^{n p} \mu\left(\left\{|f(x)| \in\left[2^{n}, 2^{n+1}\right\}\right)\right.
\end{aligned}
$$

On the other hand,

$$
\sum_{n=1}^{\infty} 2^{n p} \mu\left(\left\{|f(x)|>2^{n}\right\}\right)=\sum_{n=1}^{\infty} 2^{n p} \sum_{k=0}^{\infty} \mu\left(\left\{|f(x)| \in\left[2^{n+k}, 2^{n+k+1}\right)\right\}\right)
$$

So, try to show the equivalence of the two sums.
(8) $15.23 /$ page 144 . Quantify the p (i.e. estimate the p in terms of α).

Hint: Consider $A=\left\{x:|f(x)| \in\left(2^{n}, 2^{n+1}\right)\right\}$.
(9) $15.25 /$ page 145 (This is a simple version of the Schur's test).

Hint: For the L^{p} bounds, you may use the duality $\left(L^{p}\right)^{*}=L^{q}$:

$$
\|T f\|_{L^{p}}=\sup _{\|g\|_{L^{q}=1}} \int K(x, y) f(y) g(x) d x d y .
$$

There are also other ways to do it.

