MATH 810: PROJECT IV DUE: DEC. 5TH 2017

- (1) 12.8/page 98
- (2) 13.8/page 105
- (3) Prove that if $p, q: \frac{1}{p} + \frac{1}{q} \neq 1$, then, the inequality

(1)
$$|\int_{A} f(x)g(x)dx| \le C||f||_{L^{p}(A)}||g||_{L^{q}(A)},$$

cannot hold for any C > 0, if $A = \mathbf{R}^1$ or $A = (0, \infty)$. On the other hand, prove (1) for A = (0, 1) and $p, q : \frac{1}{p} + \frac{1}{q} \ge 1$.

Hint: Scaling - apply the inequality to $f_{\lambda}(x) := f(\lambda x)$.

- (4) 15.7/page 142.
- (5) In 15.7/page 142: Find $p_0 \in (1,2)$, so that $f \in L^p : p > p_0$ we have $\int_0^1 f(x)g_n(x)dx \to 0$, while for $p < p_0$, we have an example $f \in L^p$, so that $\int_0^1 f(x)g_n(x)dx$ does not converge to zero.
- (6) 15.10/page 142

Hint: First show that it is enough to show the claim for a dense set of g, for example g is a bounded function in L^q , with compact support. Next, use that $f_n \to f$ a.e., means that $f_n \to f$ in measure on the support of g (which is compact set, with finite measure).

(7) 15.15/page 143. Here, we do need finite measure space $\mu(X) < \infty$. **Hint:** It is easy to see that if the sum is finite, then $f \in L^p(\mu)$. For the reverse direction, write

$$\int |f(x)|^p d\mu = \int_{|f(x)|<1} |f(x)|^p d\mu + \sum_{n=0}^{\infty} \int_{|f(x)|\in[2^n,2^{n+1})} |f(x)|^p d\mu \sim \sim \int_{|f(x)|<1} |f(x)|^p d\mu + \sum_{n=0}^{\infty} 2^{np} \mu(\{|f(x)|\in[2^n,2^{n+1}\}).$$

On the other hand,

$$\sum_{n=1}^{\infty} 2^{np} \mu(\{|f(x)| > 2^n\}) = \sum_{n=1}^{\infty} 2^{np} \sum_{k=0}^{\infty} \mu(\{|f(x)| \in [2^{n+k}, 2^{n+k+1})\}).$$

So, try to show the equivalence of the two sums.

- (8) 15.23/page 144. Quantify the p (i.e. estimate the p in terms of α). Hint: Consider $A = \{x : |f(x)| \in (2^n, 2^{n+1})\}.$
- (9) 15.25/page 145 (This is a simple version of the Schur's test). **Hint:** For the L^p bounds, you may use the duality $(L^p)^* = L^q$:

$$||Tf||_{L^p} = \sup_{||g||_{L^q}=1} \int K(x,y)f(y)g(x)dxdy.$$

MATH 810: PROJECT IV DUE: DEC. 5TH 2017

There are also other ways to do it.