MATH 810: PROJECT IV
 DUE: NOV. 13TH, 2014

(1) Problem 11.4/page 88;

Solution:

We have by Fubini's

$$
\begin{aligned}
1=m(A) & =\int_{[0,1]^{2}} \chi_{A}(x, y) d x d y=\int_{0}^{1}\left(\int_{0}^{1} \chi_{A}(x, y) d y\right) d x= \\
& =\int_{0}^{1} m_{1}\left(s_{x}(A)\right) d x \leq \max _{x \in[0,1]} m_{1}\left(s_{x}(A)\right) \leq 1
\end{aligned}
$$

It follows that there all equalities above. Thus, $m_{1}\left(s_{x}(A)\right)=1$ a.e. Indeed, assume not. Then, there exists $\delta>0$, so that

$$
m\left(B_{\delta}\right)=m\left(x \in(0,1):\left\{m_{1}\left(s_{x}(A)\right)<1-\delta\right\}\right)>0
$$

Then, by Chebyshev's

$$
\begin{aligned}
1 & =\int_{0}^{1} m_{1}\left(s_{x}(A)\right) d x=\int_{B_{\delta}} m_{1}\left(s_{x}(A)\right) d x+\int_{B_{\delta}^{c}} m_{1}\left(s_{x}(A)\right) d x \leq \\
& \leq m\left(B_{\delta}\right)(1-\delta)+m\left(B_{\delta}^{c}\right)<m\left(B_{\delta}\right)+m\left(B_{\delta}^{c}\right)=1
\end{aligned}
$$

Thus, $1<1$, a contradiction.
(2) Problem 11.11/page 89

Hint: Use Fubini's

$$
\int\left(\int f(x, y) d \mu y\right) d x=\int\left(\int f(x, y) d x\right) d \mu(y)
$$

for specifically designed function f.
-bf Solution:
Consider the function $f(x, y)=\chi_{(0, c]}(y-x)$ and its integral over the product space $\left(\mathbf{R}^{1}, d x\right) \times\left(\mathbf{R}^{1}, d m(y)\right)$, where $d x$ is the Lebesgue measure on \mathbf{R}^{1}. We have by Fubini,

$$
\begin{aligned}
\iint \chi_{(0, c]}(y-x) d x d \mu(y) & =\int\left(\int \chi_{(0, c]}(y-x) d \mu(y)\right) d x= \\
=\int\left(\int \chi_{(x, x+c]}(z) d \mu(z)\right) d x & \left.=\int \mu(x, x+c]\right) d x .
\end{aligned}
$$

On the either hand, again by Fubini,

$$
\begin{aligned}
& \iint \chi_{(0, c]}(y-x) d x d \mu(y)=\int\left(\int \chi_{(0, c]}(y-x) d x\right) d \mu(y)= \\
= & \int\left(\int_{y-c}^{y} d x\right) d \mu(y)=c \int_{\mathbf{R}^{1}} d \mu(y)=c \mu\left(\mathbf{R}^{1}\right) .
\end{aligned}
$$

This is the statement, if one realize that $f(x+c)-f(x)=\mu(x, x+c])$.
(3) Problem 12.4/page 98 (The definition of absolute continuity is actually on page 99).

Solution:

The definition for absolute continuity for signed measure is nowhere to be found in the book, but it is the usual thing - we say that the signed measure ν is abs. cont. w.r.t. the (complete) measure μ (denoted $\nu \ll \mu$), if $\mu(A)=0$ implies $\nu(A)=0$. Suppose that.

Let $\nu=\nu^{+}-\nu^{-}$be the Hahn decomposition of ν. Let E, F be the negative and positive sets respectively for ν. Then, by definition $\nu^{-}(A)=\nu(A \cap E)$, $\nu^{+}(A)=\nu(A \cap F)$. We have that $A \cap F \subset A$ and $A \cap E \subset F$. Since μ is complete $\mu(A \cap F)=0, \mu(A \cap E)=0$ and hence by the assumption $\nu \ll \mu$, $\nu(A \cap F)=0=\nu(A \cap E)$. Thus,

$$
\nu^{+}(A)=\nu(A \cap F)=0, \nu^{-}(A)=\nu(A \cap E)=0
$$

Conversely, if $\nu^{ \pm} \ll \mu$, we have that if $\mu(A)=0, \nu^{ \pm}(A)=0$ and hence

$$
\nu(A)=\nu^{+}(A)-\nu^{-}(A)=0
$$

(4) Problem 12.7/page 98

Solution:

We only prove it for μ^{+}, the other statement is similar. We have

$$
\mu^{+}(A)=\mu(A \cap F) \leq \sup \{\mu(B): B \in \mathcal{A}, B \subset A\}
$$

Conversely, take any $B \in \mathcal{A}, B \subset A$. We have

$$
\mu(B)=\mu^{+}(B)-\mu^{-}(B) \leq \mu^{+}(B) \leq \mu^{+}(A)
$$

where we have used that $\mu^{-}(B) \geq 0$ and then, since μ^{+}is a measure, $\mu^{+}(B) \leq$ $\mu^{+}(A)$, since $B \subset A$. Thus,

$$
\sup \{\mu(B): B \in \mathcal{A}, B \subset A\} \leq \mu^{+}(A)
$$

(5) Problem 12.8/page 98

Solution:

Again, we show this, by establishing a two way inequality.

$$
\begin{aligned}
& |\mu|(A) \mid=\mu^{+}(A)+\mu^{-}(A)=\mu(A \cap F)-\mu(A \cap E)= \\
= & |\mu(A \cap F)|+|\mu(A \cap E)| \leq \sup \left\{\sum\left|\mu\left(B_{j}\right)\right|: B_{j} \subset \mathcal{A}, B_{j} \cap B_{k}=\emptyset, \cup B_{j}=A\right\}
\end{aligned}
$$

Conversely, for $B_{j} \subset \mathcal{A}, B_{j} \cap B_{k}=\emptyset, \cup B_{j}=A$, we have

$$
\left|\mu\left(B_{j}\right)\right|=\left|\mu^{+}\left(B_{j}\right)-\mu^{-}\left(B_{j}\right)\right| \leq\left|\mu^{+}\left(B_{j}\right)\right|+\left|\mu^{-}\left(B_{j}\right)\right|=|\mu|\left(B_{j}\right) .
$$

Hence

$$
\sum\left|\mu\left(B_{j}\right)\right| \leq \sum|\mu|\left(B_{j}\right)=|\mu|(A)
$$

since $|\mu|$ is a measure. Thus,

$$
\sup \left\{\sum\left|\mu\left(B_{j}\right)\right|: B_{j} \subset \mathcal{A}, B_{j} \cap B_{k}=\emptyset, \cup B_{j}=A\right\} \leq|\mu|(A)
$$

