MATH 810: PROJECT III

DUE: OCT. 28TH, 2014

(1) Let E be a Lebesgue measurable subset of $\mathbf{R}^{1}, m(E)<\infty$. Prove that

$$
\lim _{x \rightarrow 0} m(E \cap E+x)=m(E) .
$$

Here $E+x=\{x+y: y \in E\}$.
Hint: Use the definition of $m(E)=\inf \left\{\sum m\left(Q_{j}\right): E \subset \cup Q_{j}\right\}$. In addition, you can take the infimum to be over finite unions only.

Solution:

Fix $\epsilon>0$. Then, find $O=\cup_{j=1}^{n} Q_{j}$, so that Q_{j} are disjoint intervals, $E \subset O$

$$
m(E)+\epsilon>m(O)
$$

whence $m(O \backslash E)<\epsilon$. Next, $O \cap O+x \backslash E \cap E+x \subset O \backslash E \cup\{O+x\} \backslash\{E+x\}$. Thus,

$$
\begin{aligned}
|m(E \cap E+x)-m(O \cap O+x)| & \leq m(O \backslash E)+m(\{O+x\} \backslash\{E+x\})= \\
& =2 m(O \backslash E)<2 \epsilon
\end{aligned}
$$

Finally, for x small enough $Q_{j}+x$ is disjoint from $Q_{i}: i \neq j$. Thus,

$$
O+x \cap O=\cup_{j=1}^{n}\left(Q_{j} \cap Q_{j}+x\right)
$$

and because of the finite sum,

$$
\lim _{x \rightarrow 0} m(O+x \cap O)=\lim _{x \rightarrow 0} \sum_{j=1}^{n} m\left(Q_{j} \cap Q_{j}+x\right)=\sum_{j=1}^{n} m\left(Q_{j}\right)=m(O)
$$

So, there exists $\delta=\delta(\epsilon)$, so that for $|x|<\delta$,

$$
m(O+x \cap O)>m(O)-\epsilon
$$

Thus, for $|x|<\delta$,
$m(E) \geq m(E \cap E+x) \geq m(O \cap O+x)-2 \epsilon \geq m(O)-3 \epsilon>m(E)-3 \epsilon$.
This shows

$$
\lim _{x \rightarrow 0} m(E \cap E+x)=m(E) .
$$

(2) Let f_{n} be a sequence of nonnegative measurable extended (i.e. could take values of $+\infty$) real-valued functions defined on a measure space (X, \mathcal{A}, μ). Suppose there is an integrable function g on x, so that $f_{n}(x) \leq g(x)$. Prove that

$$
\int_{X} \limsup f_{n} d \mu \geq \limsup \int_{X} f_{n} d \mu
$$

Hint: Fatou's lemma.
Solution:

Consider the functions $g_{n}:=g(x)-f_{n}(x) \geq 0$. Apply the Fatou's lemma to them. We get

$$
\liminf \int g_{n}(x) d \mu \geq \int \liminf g_{n}(x) d \mu
$$

But

$$
\begin{aligned}
\liminf \int g_{n}(x) d \mu & =\int g(x) d \mu-\lim \sup \int f_{n}(x) d \mu \\
\int \liminf g_{n}(x) d \mu & =\int g(x) d \mu-\int \limsup f_{n}(x) d \mu
\end{aligned}
$$

Resolving the last inequalities yields the result.
(3) Exercise 10.2

Hint: For $d\left(f_{n}, f\right) \rightarrow 0 \Rightarrow f_{n} \rightarrow f$ in measure, use the Chebyshev's inequality. For the reverse direction, split the integration in the definition of $d\left(f_{n}, f\right)$ over the set $A_{n, \epsilon}=\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}$ and its complement.

Solution:

The fact that d is a metric was shown in class. Suppose that $d\left(f_{n}, f\right) \rightarrow 0$. Let $\epsilon>0$. Since the function $t \rightarrow \frac{t}{1+t}$ is increasing, we have by Chebyhev's

$$
\frac{\epsilon}{1+\epsilon} m\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right) \leq d\left(f_{n}, f\right)
$$

Thus, by the squeeze theorem

$$
\lim _{n \rightarrow \infty} m\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right)=0 .
$$

Suppose now that $\lim _{n} m\left(A_{n}^{\epsilon}\right)=0$. We have

$$
\begin{aligned}
d\left(f_{n}, f\right) & =\int \frac{\left|f_{n}(x)-f(x)\right|}{1+\left|f_{n}(x)-f(x)\right|} d \mu=\int_{A_{n}^{\epsilon}} \frac{\left|f_{n}(x)-f(x)\right|}{1+\left|f_{n}(x)-f(x)\right|} d \mu+ \\
& +\int_{\left(A_{n}^{\epsilon}\right)^{c}} \frac{\left|f_{n}(x)-f(x)\right|}{1+\left|f_{n}(x)-f(x)\right|} d \mu \leq \mu\left(A_{n}^{\epsilon}\right)+\epsilon \mu\left(\left(A_{n}^{\epsilon}\right)^{c}\right) \leq \mu\left(A_{n}^{\epsilon}\right)+\epsilon \mu(X)
\end{aligned}
$$

Choosing $\delta>0$, we first select $\epsilon: \epsilon \mu(X)<\delta / 2$. Then, we select $N=N(\epsilon)=$ $N(\delta)$, so that for $n>N$, we have $\mu\left(A_{n}^{\epsilon}\right)<\delta / 2$. Thus, for $N>N(\delta)$, we have

$$
d\left(f_{n}, f\right)<\delta
$$

(4) Let f_{n} be a sequence of positive Lebesgue measurable functions on $[0,1]$, so that

$$
\sum_{n=1}^{\infty} m\left(\left\{x \in[0,1]: f_{n}(x)>1\right\}\right)<\infty
$$

Show that $\limsup _{n} f_{n}(x) \leq 1$ a.e.
Hint: Consider the set $A=\left\{x: \lim \sup f_{n}(x)>1\right\}$. Show that

$$
\left.A \subset \cap_{k=1}^{\infty} \cup_{n=k}^{\infty}\left\{x \in[0,1]: f_{n}(x)>1\right\}\right)
$$

and argue from there.

Solution:

We use the formula $f(x)=\limsup f_{n}(x)=\inf _{k \geq 1} \sup _{n \geq k} f_{n}(x)$. Hence,

$$
A \subset \cap_{k=1}^{\infty}\left\{x: \sup _{n \geq k} f_{n}(x)>1\right\}=\cap_{k=1}^{\infty} \cup_{n=k}^{\infty}\left\{x: f_{n}(x)>1\right\}
$$

Thus,

$$
m(A)=\lim _{k} m\left(\cup_{n=k}^{\infty}\left\{x: f_{n}(x)>1\right\}\right) \leq \lim _{k} \sum_{n=k}^{\infty} m\left(\left\{x: f_{n}(x)>1\right\}\right)
$$

The Cauchy condition for the convergence of the series
$\sum_{n=1}^{\infty} m\left(\left\{x \in[0,1]: f_{n}(x)>1\right\}\right)$ dictates that

$$
\lim _{k} \sum_{n=k}^{\infty} m\left(\left\{x: f_{n}(x)>1\right\}\right)=0
$$

Thus, $m(A)=0$.
(5) Suppose that $g:[0,1] \rightarrow \mathbf{R}^{1}$ is a bounded and measurable function. Suppose that $\int_{0}^{1} f(x) g(x) d m=0$ for all continuous functions $f: \int_{0}^{1} f(x) d m=0=$ $\int_{0}^{1} x f(x) d m$. Prove that there exists C_{1}, C_{2}, so that $g(x)=C_{1}+C_{2} x$ a.e. Hint:

- Prove first the "easy" version. That is, assuming $\int_{0}^{1} f(x) g(x) d m=0$ for all continuous functions f implies that $g(x)=0$ a.e.
- For the function g, introduce C_{1}, C_{2}, to be the unique solution of

$$
\left\lvert\, \begin{aligned}
& C_{1}+\frac{C_{2}}{2}=\int_{0}^{1} g(x) d m \\
& \frac{C_{1}}{2}+\frac{C_{2}}{3}=\int_{0}^{1} x g(x) d m
\end{aligned}\right.
$$

Prove that the function $\tilde{g}(x):=g(x)-C_{1}-C_{2} x$ satisfies $\int_{0}^{1} h(x) \tilde{g}(x) d m=$ 0 for all continuous functions h. Conclude.
How do we come up with this system for C_{1}, C_{2} ?

Solution:

The easy version was proved in class. Note that the function \tilde{g} satisfies $\int \tilde{g}(x) d m=0=\int x \tilde{g}(x) d m$.
Next, take any continuous function h and consider the two constants C_{1}^{h}, C_{2}^{h}, defined as solution to

$$
\left\lvert\, \begin{aligned}
& C_{1}^{h}+\frac{C_{2}^{h}}{2}=\int_{0}^{1} h(x) d m \\
& \frac{C_{1}^{h}}{2}+\frac{C_{2}^{h}}{3}=\int_{0}^{1} x h(x) d m
\end{aligned}\right.
$$

Note that the function $\tilde{h}:=h(x)-C_{1}^{h}-C_{2}^{h} x$ satisfies $\int \tilde{h}(x) d m=$ $\int \tilde{h}(x) x d m=0$ as well. We have

$$
\begin{aligned}
& \int_{0}^{1} h(x) \tilde{g}(x) d m=\int_{0}^{1} \tilde{h}(x) \tilde{g}(x) d m-C_{1}^{h} \int \tilde{g}(x) d m-C_{2}^{h} \int x \tilde{g}(x) d m= \\
= & \int_{0}^{1} \tilde{h}(x) \tilde{g}(x) d m=\int_{0}^{1} \tilde{h}(x) g(x) d m-C_{1}^{g} \int_{0}^{1} \tilde{h}(x) d m-C_{2}^{g} \int_{0}^{1} x \tilde{h}(x) d m= \\
= & \int_{0}^{1} \tilde{h}(x) g(x) d m=0
\end{aligned}
$$

where in the last identity, we have used the assumption on g. Thus, by the simple version, we have that $\tilde{g}(x)=0$ a.e. Thus, $g(x)=C_{1}^{g}+C_{2}^{g} x$ a.e.

