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(1) Let E be a Lebesgue measurable subset of R1, m(E) <∞. Prove that

lim
x→0

m(E ∩ E + x) = m(E).

Here E + x = {x+ y : y ∈ E}.
Hint: Use the definition of m(E) = inf{

∑
m(Qj) : E ⊂ ∪Qj}. In addition,

you can take the infimum to be over finite unions only.
Solution:
Fix ε > 0. Then, find O = ∪nj=1Qj, so that Qj are disjoint intervals, E ⊂ O

m(E) + ε > m(O),

whence m(O\E) < ε. Next, O∩O+x\E∩E+x ⊂ O\E∪{O+x}\{E+x}.
Thus,

|m(E ∩ E + x)−m(O ∩O + x)| ≤ m(O \ E) +m({O + x} \ {E + x}) =

= 2m(O \ E) < 2ε.

Finally, for x small enough Qj + x is disjoint from Qi : i 6= j. Thus,

O + x ∩O = ∪nj=1(Qj ∩Qj + x)

and because of the finite sum,

lim
x→0

m(O + x ∩O) = lim
x→0

n∑
j=1

m(Qj ∩Qj + x) =
n∑
j=1

m(Qj) = m(O).

So, there exists δ = δ(ε), so that for |x| < δ,

m(O + x ∩O) > m(O)− ε.
Thus, for |x| < δ,

m(E) ≥ m(E ∩ E + x) ≥ m(O ∩O + x)− 2ε ≥ m(O)− 3ε > m(E)− 3ε.

This shows

lim
x→0

m(E ∩ E + x) = m(E).

(2) Let fn be a sequence of nonnegative measurable extended (i.e. could take
values of +∞) real-valued functions defined on a measure space (X,A, µ).
Suppose there is an integrable function g on x, so that fn(x) ≤ g(x). Prove
that ∫

X

lim sup fndµ ≥ lim sup

∫
X

fndµ.

Hint: Fatou’s lemma.
Solution:

1
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Consider the functions gn := g(x) − fn(x) ≥ 0. Apply the Fatou’s lemma to
them. We get

lim inf

∫
gn(x)dµ ≥

∫
lim inf gn(x)dµ

But

lim inf

∫
gn(x)dµ =

∫
g(x)dµ− lim sup

∫
fn(x)dµ∫

lim inf gn(x)dµ =

∫
g(x)dµ−

∫
lim sup fn(x)dµ

Resolving the last inequalities yields the result.
(3) Exercise 10.2

Hint: For d(fn, f)→ 0⇒ fn → f in measure, use the Chebyshev’s inequality.
For the reverse direction, split the integration in the definition of d(fn, f) over
the set An,ε = {x : |fn(x)− f(x)| > ε} and its complement.
Solution:
The fact that d is a metric was shown in class. Suppose that d(fn, f) → 0.
Let ε > 0. Since the function t→ t

1+t
is increasing, we have by Chebyhev’s

ε

1 + ε
m({x : |fn(x)− f(x)| > ε}) ≤ d(fn, f)

Thus, by the squeeze theorem

lim
n→∞

m({x : |fn(x)− f(x)| > ε}) = 0.

Suppose now that limnm(Aεn) = 0. We have

d(fn, f) =

∫
|fn(x)− f(x)|

1 + |fn(x)− f(x)|
dµ =

∫
Aεn

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

dµ+

+

∫
(Aεn)

c

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

dµ ≤ µ(Aεn) + εµ((Aεn)c) ≤ µ(Aεn) + εµ(X)

Choosing δ > 0, we first select ε : εµ(X) < δ/2. Then, we select N = N(ε) =
N(δ), so that for n > N , we have µ(Aεn) < δ/2. Thus, for N > N(δ), we have

d(fn, f) < δ.

(4) Let fn be a sequence of positive Lebesgue measurable functions on [0, 1], so
that

∞∑
n=1

m({x ∈ [0, 1] : fn(x) > 1}) <∞.

Show that lim supn fn(x) ≤ 1 a.e.
Hint: Consider the set A = {x : lim sup fn(x) > 1}. Show that

A ⊂ ∩∞k=1 ∪∞n=k {x ∈ [0, 1] : fn(x) > 1})
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and argue from there.
Solution:
We use the formula f(x) = lim sup fn(x) = infk≥1 supn≥k fn(x). Hence,

A ⊂ ∩∞k=1{x : sup
n≥k

fn(x) > 1} = ∩∞k=1 ∪∞n=k {x : fn(x) > 1}.

Thus,

m(A) = lim
k
m(∪∞n=k{x : fn(x) > 1}) ≤ lim

k

∞∑
n=k

m({x : fn(x) > 1}).

The Cauchy condition for the convergence of the series∑∞
n=1m({x ∈ [0, 1] : fn(x) > 1}) dictates that

lim
k

∞∑
n=k

m({x : fn(x) > 1}) = 0.

Thus, m(A) = 0.
(5) Suppose that g : [0, 1]→ R1 is a bounded and measurable function. Suppose

that
∫ 1

0
f(x)g(x)dm = 0 for all continuous functions f :

∫ 1

0
f(x)dm = 0 =∫ 1

0
xf(x)dm. Prove that there exists C1, C2, so that g(x) = C1 + C2x a.e.

Hint:
• Prove first the “easy” version. That is, assuming

∫ 1

0
f(x)g(x)dm = 0 for

all continuous functions f implies that g(x) = 0 a.e.
• For the function g, introduce C1, C2, to be the unique solution of∣∣∣∣ C1 + C2

2
=
∫ 1

0
g(x)dm

C1

2
+ C2

3
=
∫ 1

0
xg(x)dm

Prove that the function g̃(x) := g(x)−C1−C2x satisfies
∫ 1

0
h(x)g̃(x)dm =

0 for all continuous functions h. Conclude.
How do we come up with this system for C1, C2?
Solution:
The easy version was proved in class. Note that the function g̃ satisfies∫
g̃(x)dm = 0 =

∫
xg̃(x)dm.

Next, take any continuous function h and consider the two constants
Ch

1 , C
h
2 , defined as solution to∣∣∣∣∣ Ch

1 +
Ch2
2

=
∫ 1

0
h(x)dm

Ch1
2

+
Ch2
3

=
∫ 1

0
xh(x)dm
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Note that the function h̃ := h(x) − Ch
1 − Ch

2 x satisfies
∫
h̃(x)dm =∫

h̃(x)xdm = 0 as well. We have∫ 1

0

h(x)g̃(x)dm =

∫ 1

0

h̃(x)g̃(x)dm− Ch
1

∫
g̃(x)dm− Ch

2

∫
xg̃(x)dm =

=

∫ 1

0

h̃(x)g̃(x)dm =

∫ 1

0

h̃(x)g(x)dm− Cg
1

∫ 1

0

h̃(x)dm− Cg
2

∫ 1

0

xh̃(x)dm =

=

∫ 1

0

h̃(x)g(x)dm = 0,

where in the last identity, we have used the assumption on g. Thus, by
the simple version, we have that g̃(x) = 0 a.e. Thus, g(x) = Cg

1 + Cg
2x

a.e.


