MATH 810: PROJECT III DUE: OCT. 28TH, 2014

(1) Let E be a Lebesgue measurable subset of $\mathbf{R}^{1}, m(E)<\infty$. Prove that

$$
\lim _{x \rightarrow 0} m(E \cap E+x)=m(E) .
$$

Here $E+x=\{x+y: y \in E\}$.
Hint: Use the definition of $m(E)=\inf \left\{\sum m\left(Q_{j}\right): E \subset \cup Q_{j}\right\}$. In addition, you can take the infimum to be over finite unions only.
(2) Let f_{n} be a sequence of nonnegative measurable extended (i.e. could take values of $+\infty$) real-valued functions defined on a measure space (X, \mathcal{A}, μ). Suppose there is an integrable function g on x, so that $f_{n}(x) \leq g(x)$. Prove that

$$
\int_{X} \limsup f_{n} d \mu \geq \limsup \int_{X} f_{n} d \mu
$$

Hint: Fatou's lemma.
(3) Exercise 10.2

Hint: For $d\left(f_{n}, f\right) \rightarrow 0 \Rightarrow f_{n} \rightarrow f$ in measure, use the Chebyshev's inequality. For the reverse direction, split the integration in the definition of $d\left(f_{n}, f\right)$ over the set $A_{n, \epsilon}=\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}$ and its complement.
(4) Let f_{n} be a sequence of positive Lebesgue measurable functions on $[0,1]$, so that

$$
\sum_{n=1}^{\infty} m\left(\left\{x \in[0,1]: f_{n}(x)>1\right\}\right)<\infty
$$

Show that $\lim \sup _{n} f_{n}(x) \leq 1$ a.e.
Hint: Consider the set $A=\left\{x: \lim \sup f_{n}(x)>1\right\}$. Show that

$$
\left.A \subset \cap_{k=1}^{\infty} \cup_{k=n}^{\infty}\left\{x \in[0,1]: f_{n}(x)>1\right\}\right)
$$

and argue from there.
(5) Suppose that $g:[0,1] \rightarrow \mathbf{R}^{1}$ is a bounded and measurable function. Suppose that $\int_{0}^{1} f(x) g(x) d m=0$ for all continuous functions $f: \int_{0}^{1} f(x) d m=0=$ $\int_{0}^{1} x f(x) d m$. Prove that there exists C_{1}, C_{2}, so that $g(x)=C_{1}+C_{2} x$ a.e. Hint:

- Prove first the "easy" version. That is, assuming $\int_{0}^{1} f(x) g(x) d m=0$ for all continuous functions f implies that $g(x)=0$ a.e.
- For the function g, introduce C_{1}, C_{2}, to be the unique solution of

$$
\left\lvert\, \begin{aligned}
& C_{1}+\frac{C_{2}}{2}=\int_{0}^{1} g(x) d m \\
& \frac{C_{1}}{2}+\frac{C_{2}}{3}=\int_{0}^{1} x g(x) d m
\end{aligned}\right.
$$

Prove that the function $\tilde{g}(x):=g(x)-C_{1}-C_{2} x$ satisfies $\int_{0}^{1} h(x) \tilde{g}(x) d m=$ 0 for all continuous functions h. Conclude.
How do we come up with this system for C_{1}, C_{2} ?

