MATH 810: PROJECT II DUE: OCT. 9TH, 2014

(1) Exercise 5.1/page 44

Solution:

We need to check that $\{x: f(x)>a\}$ is measurable for each real a. Let $r_{n} \rightarrow a, r_{n}>a$. We have that

$$
\{x: f(x)>a\}=\cup_{n=1}^{\infty}\left\{x: f(x)>r_{n}\right\}
$$

and hence $\{x: f(x)>a\}$ is measurable.
(2) Exercise $5.2 /$ page 44

Hint: Cover $(0,1)$ with a countable family of intervals, so that on each one of them $f=g_{j}$.

Solution:

For each x, take the $r_{x}>0$ and a Borel g_{x}, so that $f=g_{x}$ on $\left(x-r_{x}, x+r_{x}\right)$. Thus $(0,1)=\cup_{x}\left(x-r_{x}, x+r_{x}\right)$. We can use the Lindelöf property of $(0,1)$, which states that there is a countable subcover ${ }^{1}$. That is, there is $\left\{x_{j}\right\}$, so that

$$
(0,1) \subset \cup_{j=1}^{\infty}\left(x_{j}-r_{j}, x_{j}+r_{j}\right)
$$

with corresponding functions g_{j}. Now for any real a, we have that

$$
f^{-1}(a, \infty)=\cup_{j=1}^{\infty}\left(\left(x_{j}-r_{j}, x_{j}+r_{j}\right) \cap g_{j}^{-1}(a, \infty)\right)
$$

Since g_{j} are Borel, it follows that $f^{-1}(a, \infty)$ is Borel as well.
(3) Let (X, \mathcal{A}) be a measure space. Let $f: X \rightarrow[-\infty, \infty]$ (that is f may be unbounded for some $x \in X$). Prove that f is measurable if and only if $f^{-1}(\{-\infty\}) \in \mathcal{A}, f^{-1}(\{\infty\}) \in \mathcal{A}$ and $f: Y \rightarrow \mathbf{R}^{1}$ is measurable, where $Y=f^{-1}(-\infty, \infty)$.

Solution:

By the definition of Borel functions, $f: X \rightarrow[-\infty, \infty]$ is Borel, if and only $f^{-1}(A)$ is Borel set in X, whenever A is a Borel subset of $[-\infty, \infty]$. But A is a Borel subset of $[-\infty, \infty]$ if and only if $A=B$ or $A=B \cup\{-\infty\}$ or $A=B \cup\{\infty\}$) or $A=B \cup\{\infty\}) \cup\{-\infty\}$, where B is Borel in $(-\infty, \infty)$. Clearly now, $f^{-1}(A)$ is Borel if and only if $f^{-1}(\{-\infty\}), f^{-1}(\{\infty\})$ and $f^{-1}(B)$ are all Borel.
(4) Exercise $6.4 /$ page 50 . You may use the linearity of the integral

Hint: Let $\epsilon>0$. Consider a simple function s, so that $0 \leq s(x) \leq|f(x)|$

$$
\int|f(x)| d \mu<\int s(x) d \mu+\frac{\epsilon}{2} .
$$

[^0]Solution: The simple function s defined above is bounded, say $M=\sup _{X} s(x)$. Denote $\delta:=\frac{\epsilon}{2 M}$. Let $A: \mu(A)<\delta$. We have by $s(x) \leq|f(x)|$ that

$$
\int_{A^{c}} s(x) d \mu \leq \int_{A^{c}}|f(x)| d \mu
$$

Thus

$$
\begin{aligned}
\int_{A} f(x) d \mu & =\int|f(x)| d \mu-\int_{A^{c}}|f(x)| d \mu \leq \int s(x) d \mu+\frac{\epsilon}{2}-\int_{A^{c}} s(x) d \mu= \\
& =\int_{A} s(x) d \mu+\frac{\epsilon}{2} \leq M \mu(A)+\frac{\epsilon}{2}<\epsilon
\end{aligned}
$$

if we take into account $\mu(A)<\delta=\frac{\epsilon}{2 M}$.
(5) Let (X, \mathcal{A}, μ) is measure space $f \geq 0$ and measurable. Show that

$$
\lambda(A):=\int_{A} f d \mu
$$

defined for $A \in \mathcal{A}$, is a measure. Also, show that for each $g \geq 0$, measurable, we have

$$
\int g d \lambda=\int f g d \mu
$$

Hint: For the measure part, use Proposition 7.5. For the integral fromula, prove it first for simple functions. Extending to arbitrary positive functions, it is easy to show $\int g d \lambda \leq \int f g d \mu$. For the reverse inequality, use the approximation result Proposition 5.14 and the monotone convergence theorem.

Solution:

λ is a measure, because for each disjoint family of sets $\left\{A_{j}\right\}: A=\cup_{j} A_{j}$, we have by Proposition 7.5

$$
\lambda(A)=\int_{A} f d \mu=\sum_{j} \int_{A_{j}} f=\sum_{j} \lambda\left(A_{j}\right)
$$

Next, for $g=\sum_{i} a_{i} \chi_{A_{i}}$ a simple function, we have
$\int g d \lambda=\sum_{i} a_{i} \lambda\left(A_{i}\right)=\sum_{i} a_{i} \int_{A_{i}} f d \mu=\int\left(\sum_{i} \chi_{A_{i}}\right) f d \mu=\int f g d \mu$.
By the definition of the integral and the previous step,

$$
\int g d \lambda=\sup \left\{\int s d \lambda: 0 \leq s \leq g\right\}=\sup \left\{\int s f d \mu: 0 \leq s \leq g\right\} \leq \int f g d \mu
$$

where in the last step, we have used that $s f \leq f g \Rightarrow \int s f d \mu \leq \int f g d \mu$.
In the reverse direction, approximate $s_{n} \uparrow g$. It follows that $s_{n} f \uparrow g f$ and hence by Lebesgue dominated convergence $\int s_{n} f d \mu \rightarrow \int g f d \mu$. But then, again by $\int g d \lambda=\sup \left\{\int s d \lambda: 0 \leq s \leq g\right\}$

$$
\int g d \lambda \geq \limsup _{n} \int s_{n} d \lambda=\underset{n}{\lim \sup _{n}} \int s_{n} f d \mu=\int g f d \mu
$$

It follows that $\int g d \lambda=\int f g d \mu$.

[^0]: ${ }^{1}$ This actually can be easily proved - just used the compactness of $[1 / n, 1-1 / n]$ and cover by finitely many intervals and then $(0,1)=\cup_{n}[1 / n, 1-1 / n]$

