MATH 810: PROJECT II DUE: OCT. 9TH, 2014

(1) Exercise 5.1/page 44

Solution:

We need to check that $\{x : f(x) > a\}$ is measurable for each real a. Let $r_n \to a, r_n > a$. We have that

$$\{x: f(x) > a\} = \bigcup_{n=1}^{\infty} \{x: f(x) > r_n\}$$

and hence $\{x : f(x) > a\}$ is measurable.

(2) Exercise 5.2/page 44

Hint: Cover (0, 1) with a countable family of intervals, so that on each one of them $f = g_j$.

Solution:

For each x, take the $r_x > 0$ and a Borel g_x , so that $f = g_x$ on $(x - r_x, x + r_x)$. Thus $(0, 1) = \bigcup_x (x - r_x, x + r_x)$. We can use the Lindelöf property of (0, 1), which states that there is a countable subcover¹. That is, there is $\{x_j\}$, so that

$$(0,1) \subset \bigcup_{j=1}^{\infty} (x_j - r_j, x_j + r_j)$$

with corresponding functions g_j . Now for any real a, we have that

$$f^{-1}(a,\infty) = \bigcup_{j=1}^{\infty} \left((x_j - r_j, x_j + r_j) \cap g_j^{-1}(a,\infty) \right)$$

Since g_i are Borel, it follows that $f^{-1}(a, \infty)$ is Borel as well.

(3) Let (X, \mathcal{A}) be a measure space. Let $f : X \to [-\infty, \infty]$ (that is f may be unbounded for some $x \in X$). Prove that f is measurable if and only if $f^{-1}(\{-\infty\}) \in \mathcal{A}, f^{-1}(\{\infty\}) \in \mathcal{A}$ and $f : Y \to \mathbf{R}^1$ is measurable, where $Y = f^{-1}(-\infty, \infty)$.

Solution:

By the definition of Borel functions, $f: X \to [-\infty, \infty]$ is Borel, if and only $f^{-1}(A)$ is Borel set in X, whenever A is a Borel subset of $[-\infty, \infty]$. But A is a Borel subset of $[-\infty, \infty]$ if and only if A = B or $A = B \cup \{-\infty\}$ or $A = B \cup \{\infty\}$) or $A = B \cup \{\infty\}$) $\cup \{-\infty\}$, where B is Borel in $(-\infty, \infty)$. Clearly now, $f^{-1}(A)$ is Borel if and only if $f^{-1}(\{-\infty\}), f^{-1}(\{\infty\})$ and $f^{-1}(B)$ are all Borel.

(4) Exercise 6.4/page 50. You may use the linearity of the integral **Hint:** Let $\epsilon > 0$. Consider a simple function s, so that $0 \le s(x) \le |f(x)|$

$$\int |f(x)| d\mu < \int s(x) d\mu + \frac{\epsilon}{2}.$$

¹This actually can be easily proved - just used the compactness of [1/n, 1-1/n] and cover by finitely many intervals and then $(0, 1) = \bigcup_n [1/n, 1-1/n]$

Solution: The simple function s defined above is bounded, say $M = sup_X s(x)$. Denote $\delta := \frac{\epsilon}{2M}$. Let $A : \mu(A) < \delta$. We have by $s(x) \leq |f(x)|$ that

$$\int_{A^c} s(x) d\mu \le \int_{A^c} |f(x)| d\mu$$

Thus

$$\begin{split} \int_A f(x)d\mu &= \int |f(x)|d\mu - \int_{A^c} |f(x)|d\mu \leq \int s(x)d\mu + \frac{\epsilon}{2} - \int_{A^c} s(x)d\mu \\ &= \int_A s(x)d\mu + \frac{\epsilon}{2} \leq M\mu(A) + \frac{\epsilon}{2} < \epsilon, \end{split}$$

if we take into account $\mu(A) < \delta = \frac{\epsilon}{2M}$.

(5) Let (X, \mathcal{A}, μ) is measure space $f \geq \tilde{0}$ and measurable. Show that

$$\lambda(A) := \int_A f d\mu,$$

defined for $A \in \mathcal{A}$, is a measure. Also, show that for each $g \ge 0$, measurable, we have

$$\int g d\lambda = \int f g d\mu.$$

Hint: For the measure part, use Proposition 7.5. For the integral fromula, prove it first for simple functions. Extending to arbitrary positive functions, it is easy to show $\int gd\lambda \leq \int fgd\mu$. For the reverse inequality, use the approximation result Proposition 5.14 and the monotone convergence theorem. **Solution:**

 λ is a measure, because for each disjoint family of sets $\{A_j\}$: $A = \bigcup_j A_j$, we have by Proposition 7.5

$$\lambda(A) = \int_A f d\mu = \sum_j \int_{A_j} f = \sum_j \lambda(A_j)$$

Next, for $g = \sum_{i} a_i \chi_{A_i}$ a simple function, we have

$$\int g d\lambda = \sum_{i} a_{i} \lambda(A_{i}) = \sum_{i} a_{i} \int_{A_{i}} f d\mu = \int (\sum_{i} \chi_{A_{i}}) f d\mu = \int f g d\mu.$$

By the definition of the integral and the previous step,

$$\int g d\lambda = \sup\{\int s d\lambda : 0 \le s \le g\} = \sup\{\int s f d\mu : 0 \le s \le g\} \le \int f g d\mu,$$

where in the last step, we have used that $sf \leq fg \Rightarrow \int sfd\mu \leq \int fgd\mu$.

In the reverse direction, approximate $s_n \uparrow g$. It follows that $s_n f \uparrow gf$ and hence by Lebesgue dominated convergence $\int s_n f d\mu \to \int gf d\mu$. But then, again by $\int g d\lambda = \sup\{\int s d\lambda : 0 \leq s \leq g\}$

$$\int gd\lambda \ge \limsup_{n} \int s_n d\lambda = \limsup_{n} \int s_n fd\mu = \int gfd\mu.$$

It follows that $\int g d\lambda = \int f g d\mu$.