MATH 810: PROJECT II DUE: OCT. 9TH, 2014

(1) Exercise 5.1/page 44
(2) Exercise 5.2/page 44

Hint: Cover $(0,1)$ with a countable family of intervals, so that on each one of them $f=g_{j}$.
(3) Let (X, \mathcal{A}) be a measure space. Let $f: X \rightarrow[-\infty, \infty]$ (that is f may be unbounded for some $x \in X$). Prove that f is measurable if and only if $f^{-1}(\{-\infty\}) \in \mathcal{A}, f^{-1}(\{\infty\}) \in \mathcal{A}$ and $f: Y \rightarrow \mathbf{R}^{1}$ is measurable, where $Y=f^{-1}(-\infty, \infty)$.
(4) Exercise $6.4 /$ page 50 . You may use the linearity of the integral

Hint: Let $\epsilon>0$. Consider a simple function s, so that $0 \leq s(x) \leq|f(x)|$

$$
\int|f(x)| d \mu<\int s(x) d \mu+\frac{\epsilon}{2}
$$

(5) Let (X, \mathcal{A}, μ) is measure space $f \geq 0$ and measurable. Show that

$$
\lambda(A):=\int_{A} f d \mu
$$

defined for $A \in \mathcal{A}$, is a measure. Also, show that for each $g \geq 0$, measurable, we have

$$
\int g d \lambda=\int f g d \mu
$$

Hint: For the measure part, use Proposition 7.5. For the integral fromula, prove it first for simple functions. Extending to arbitrary positive functions, it is easy to show $\int g d \lambda \leq \int f g d \mu$. For the reverse inequality, use the approximation result Proposition 5.14 and the monotone convergence theorem.

