MATH 810: PROJECT I DUE: SEPT. 21, 2017

(1) Exercise 2.3/page 11.

Hint: I already did this in class, but fill in the details. Take $C_n = \{(p,q) : 0 and <math>A_n = \sigma(C_n)$. Show that A_n are finite σ algebras, but $A = \bigcup_n A_n$ (which is a countable set!) is not a σ algebra.

- (2) Exercise 2.6/page 11
- (3) Exercise 3.5/page 16
- (4) Le μ^* be an outer measure on X and A_j be a sequence of disjoint, μ^* measurable sets. Prove

$$\mu^*(E \cap \cup_n A_n) = \sum_n \mu^*(E \cap A_n).$$

Hint: One direction is easy. For the other, prove that it suffices to show

$$\mu^{*}(E \cap (A \cup B)) = \mu^{*}(E \cap A) + \mu^{*}(E \cap B)$$

For A, B measurable and $A \cap B = \emptyset$

- (5) Exercise 4.4/page 34
- (6) Exercise 4.7/page 34
- (7) Exercise 4.11/page 35 **Hint:** Argue by contradiction. This will give a sequence $x_n \to 0$, so that $(x_n + A) \cap A = \emptyset$.
- (8) Exercise 4.14/page 35
- (9) Exercise 4.17/page 36

Hint: Take a countable dense set in $A : \{x_n\}_n, x_n \in A$. Show that

$$B = \bigcup_{n} [x_{n} - 1, x_{n} + 1] \cup A - 1 \cup A + 1.$$