## MATH 810: PROJECT I <br> DUE: SEPT. 16, 2014

(1) Exercise 2.7, page 11.

Solution: Clearly $\emptyset, X \in \mathcal{A}$, because $0=\chi_{\emptyset}, 1=\chi_{X}$ are in the set $\mathcal{F}$. Next, we need to verify that if $A_{j} \in \mathcal{A}$, then $\cup_{j=1}^{\infty} A_{j} \in \mathcal{A}$. We have that $\chi_{A_{j}} \in \mathcal{F}$. Define $B_{1}=A_{1}, B_{j}=A_{j} \backslash\left(B_{1} \cup \ldots \cup B_{j-1}\right)$.

We prove by induction that $B_{j} \in \mathcal{A}$. Indeed, by induction hypothesis $K_{j}:=B_{1} \cup \ldots \cup B_{j-1} \in \mathcal{A}$, i.e. $\chi_{K_{j}} \in \mathcal{F}$. So

$$
\chi_{B_{j}}=\chi_{A_{j}}\left(1-\chi_{K_{j}}\right) \in \mathcal{F} .
$$

Now, since $\cup_{j=1}^{\infty} A_{j}=\cup_{j=1}^{\infty} B_{j}$ and the $B_{j}$ are disjoint, we have

$$
\chi_{\cup_{j=1}^{\infty} A_{j}}(x)=\sum_{j=1}^{\infty} \chi_{B_{j}}(x) \in \mathcal{F}
$$

as a limit of the partial sums $s_{N}(x)=\sum_{j=1}^{N} \chi_{B_{j}}(x) \in \mathcal{F}$.
(2) Exercise 3.8, page 16:

Hint: Follow the steps outlined below.
(a) Show that $\sigma(\mathcal{A} \cup \mathcal{N})=\{A \cup N: A \in \mathcal{A}, N \in \mathcal{N}\}$. This is nontrivial!
(b) Define $\tilde{\mu}: \mathcal{B} \rightarrow[0, \infty]$,

$$
\tilde{\mu}(A \cup N):=\mu(A)
$$

(c) Prove that $\tilde{\mu}$ is a measure (i.e. $\sigma$ additivity).
(d) Prove that all null sets for $\tilde{\mu}$ are in $\sigma(\mathcal{A} \cup \mathcal{N})$, i.e. $(X, \sigma(\mathcal{A} \cup \mathcal{N}), \tilde{\mu})$ is a complete measure space.
Solution: Since $\sigma(\mathcal{A} \cup \mathcal{N})$ is a $\sigma$ algebra, which contains $\mathcal{A} \cup \mathcal{N}$, it remains to prove that $\mathcal{A} \cup \mathcal{N}$ is a $\sigma$ algebra itself and then, it would be equal to $\sigma(\mathcal{A} \cup \mathcal{N})$. Clearly, $X, \emptyset$ are in $\mathcal{A} \cup \mathcal{N}$. Next, complements are preserved as well. Indeed, let $B$ be a set of measure zero, so that $N \subset B$. We have

$$
(A \cup N)^{c}=A^{c} \cap N^{c}=A^{c} \cap\left(B^{c} \cup B \backslash N\right)
$$

But $A^{c} \cap B^{c} \in \mathcal{A}$, since $\mathcal{A}$ is a $\sigma$ algebra. Also, $A^{c} \cap B \backslash N$ is a null set as a subset of $B$. Finally, we need to check for $\sigma$ additivity. We have

$$
\cup_{j=1}^{\infty}\left(A_{j} \cup N_{j}\right)=\left(\cup_{j=1}^{\infty} A_{j}\right) \cup\left(\cup_{j=1}^{\infty} N_{j}\right)
$$

The first set belongs to $\mathcal{A}$ since it is $\sigma$ algebra, while for the second take $B_{j}: N_{j} \subset B_{j}$ of measure zero. Then $\cup_{j=1}^{\infty} B_{j}$ is also a measure zero set and hence $\cup_{j=1}^{\infty} N_{j} \in \mathcal{N}$.

For the $\sigma$ additivity of the measure $\tilde{\mu}$, we have

$$
\tilde{\mu}\left(\cup_{j=1}^{\infty}\left(A_{j} \cup N_{j}\right)\right)=\mu\left(\cup_{j=1}^{\infty} A_{j}\right)=\sum_{j} \mu\left(A_{j}\right)=\sum_{j} \tilde{\mu}\left(A_{j} \cup N_{j}\right) .
$$

Finally, $Z$ is a null set for $\tilde{\mu}$, if $Z=A \cup N$, so that $\mu(A)=0$. But then $A \cup N$ is a null set and hence an element of $\mathcal{N}$, hence it belongs to the $\sigma$ algebra $\sigma(\mathcal{A} \cup \mathcal{N})$.
(3) Exercise 4.3/page 34

Solution: The property $\mu^{*}(\emptyset)=0$ is obvious, just pick $B=\emptyset$. Also, if $A_{a} \subset A_{2}$, we have that $\mu^{*}\left(A_{1}\right) \leq \mu^{*}\left(A_{2}\right)$, just by arguing that infimum over large set is no bigger than the infimum over small set. Finally, let $A_{i}$ are arbitrary subsets of $X$. Let $\varepsilon>0$ and consider sets $B_{i} \in \mathcal{A}$, so that $A_{i} \subset B_{i}$, but $\mu^{*}\left(A_{i}\right)+\varepsilon 2^{-i}>\mu\left(B_{i}\right)$. Then, $A:=\cup_{i} A_{i} \subset \cup_{i} B_{i}$. Recalling that for each measure, we have $\mu\left(\cup_{i} B_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(B_{i}\right)$, we have

$$
\mu^{*}(A) \leq \mu\left(\cup_{i} B_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(B_{i}\right) \leq \sum_{i=1}^{\infty}\left(\mu^{*}\left(A_{i}\right)+2^{-i} \varepsilon\right)=\varepsilon+\sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)
$$

Since $\varepsilon>0$ is arbitrary, we have proved

$$
\mu^{*}(A) \leq \sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)
$$

(4) Exercise 4.10/page 35

Hint: For every $\delta>0$, there is a family of intervals $\left\{I_{j}\right\}_{j}$, so that $A \subset \cup I_{j}$ and

$$
m(A)+\delta>\sum_{j} m\left(I_{j}\right)
$$

On the other hand,

$$
m(A) \leq \sum_{j} m\left(A \cap I_{j}\right)
$$

Solution: by the definition of a the outer measure, there exists a family of intervals $\left\{I_{j}\right\}_{j}$, so that $A \subset \cup I_{j}$ and

$$
m(A)+\delta=\mu^{*}(A)+\delta>\sum_{j} m\left(I_{j}\right)
$$

By the assumption

$$
(1-\varepsilon) \sum_{j} m\left(I_{j}\right) \geq \sum_{j} m\left(A \cap I_{j}\right) \geq m(A)
$$

Putting everything together, it follows that

$$
(1-\varepsilon)(m(A)+\delta) \geq m(A)
$$

which implies $\frac{\delta(1-\varepsilon)}{\varepsilon} \geq m(A)$, which is supposed to be true for all $\delta>0(\varepsilon$ is fixed!). Thus, $m(A)=0$, in contradiction with the assumptions.

