MATH 810: PROJECT I DUE: SEPT. 16, 2014

(1) Exercise 2.7, page 11.
(2) Exercise 3.8, page 16:

Hint: Follow the steps outlined below.
(a) Show that $\sigma(\mathcal{A} \cup \mathcal{N})=\{A \cup N: A \in \mathcal{A}, N \in \mathcal{N}\}$. This is nontrivial!
(b) Define $\tilde{\mu}: \mathcal{B} \rightarrow[0, \infty]$,

$$
\tilde{\mu}(A \cup N):=\mu(A)
$$

(c) Prove that $\tilde{\mu}$ is a measure (i.e. σ additivity).
(d) Prove that all null sets for $\tilde{\mu}$ are in $\sigma(\mathcal{A} \cup \mathcal{N})$, i.e. $(X, \sigma(\mathcal{A} \cup \mathcal{N}), \tilde{\mu})$ is a complete measure space.
(3) Exercise 4.3/page 34
(4) Exercise $4.10 /$ page 35

Hint: For every $\delta>0$, there is a family of intervals $\left\{I_{j}\right\}_{j}$, so that $A \subset \cup I_{j}$ and

$$
m(A)+\delta>\sum_{j} m\left(I_{j}\right)
$$

On the other hand,

$$
m(A) \leq \sum_{j} m\left(A \cap I_{j}\right)
$$

