MATH 810: PROJECT I DUE: SEPT. 16, 2014

(1) Exercise 2.7, page 11.

(2) Exercise 3.8, page 16:

Hint: Follow the steps outlined below.

(a) Show that $\sigma(A \cup N) = \{A \cup N : A \in A, N \in N\}$. This is nontrivial!

(b) Define $\tilde{\mu}: \mathcal{B} \to [0, \infty]$,

$$\tilde{\mu}(A \cup N) := \mu(A).$$

(c) Prove that $\tilde{\mu}$ is a measure (i.e. σ additivity).

(d) Prove that all null sets for $\tilde{\mu}$ are in $\sigma(A \cup N)$, i.e. $(X, \sigma(A \cup N), \tilde{\mu})$ is a complete measure space.

(3) Exercise 4.3/page 34

(4) Exercise 4.10/page 35

Hint: For every $\delta > 0$, there is a family of intervals $\{I_j\}_j$, so that $A \subset \cup I_j$ and

$$m(A) + \delta > \sum_{j} m(I_{j})$$

On the other hand,

$$m(A) \le \sum_{j} m(A \cap I_{j})$$