SOLUTION OF SOME PROBLEMS FROM HOMEWORK SET I

Problem 46/page 26

By assumption $u \in C^{2}$, hence $h \in C^{1}$. Also, there is the equality $u_{x y}=u_{y x}$. Now, we need to check Cauchy-Riemann. We have

$$
\begin{aligned}
& (\Re h)_{x}=u_{y x}=u_{x y}=(\Im h)_{y} \\
& (\Re h)_{y}=u_{y y}=-u_{x x}=-(\Im h)_{x} .
\end{aligned}
$$

Problem 53/page 27
Let $f=F^{\prime}=F_{x}=u_{x}+i v_{x}$. Note that by Cauchy-Riemann $u_{x}=v_{y}, u_{y}=-v_{x}$.

$$
\int_{0}^{2 \pi} f\left(e^{i t}\right) e^{i t} d t=\int_{0}^{2 \pi}\left(u_{x} \cos (t)-v_{x} \sin (t)\right) d t+i \int_{0}^{2 \pi} u_{x} \sin (t)+v_{x} \cos (t) d t
$$

Now

$$
\begin{aligned}
\int_{0}^{2 \pi}\left(u_{x} \cos (t)-v_{x} \sin (t)\right) d t & =-\int_{0}^{2 \pi}\left(v_{y} \cos (t)+v_{x} \sin (t)\right) d t= \\
& =\int_{0}^{2 \pi} \frac{d}{d t}[v(\cos (t), \sin (t))] d t=0
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\int_{0}^{2 \pi} u_{x} \sin (t)+v_{x} \cos (t) d t & =\int_{0}^{2 \pi} u_{x} \sin (t)-u_{y} \cos (t)= \\
& =-\int_{0}^{2 \pi} \frac{d}{d t}[u(\cos (t), \sin (t))] d t=0
\end{aligned}
$$

Problem 56/page 27

Define the functions as in the Hint. Define

$$
\tilde{F}(z)=\left\{\begin{array}{cc}
F_{j}(z)-c_{j, 1} & z \in U_{j}, j \geq 2 \\
F_{1}(z) & z \in U_{1}
\end{array}\right.
$$

Clearly, $\tilde{F}(z)$ is analytic in each U_{j} and hence in $\bigcup U_{j}$. Thus, we only need to show that the definition is consistent.

Next, let $1 \leq j_{1}<j_{2}$ and $z \in U_{j_{1}}$. We need to show that $F_{j_{1}}(z)-c_{j_{1}, 1}=F_{j_{2}}(z)-c_{j_{2}, 1}$ for $z \in U_{j_{1}}$. For this values of $z, F_{j_{2}}(z)-F_{j_{1}}(z)=c_{j_{2}, j_{1}}$. Thus, matters reduce to showing that

$$
\begin{equation*}
c_{j_{2}, j_{1}}+c_{j_{1}, 1}=c_{j_{2}, 1} . \tag{1}
\end{equation*}
$$

This last statement is true, since for $z \in U_{1} \subseteq U_{j_{1}}$

$$
F_{j_{2}}(z)-F_{j_{1}}(z)=c_{j_{2}, j_{1}} ; F_{j_{1}}(z)-F_{1}(z)=c_{j_{1}, 1} ; F_{j_{2}}(z)-F_{1}(z)=c_{j_{2}, 1}
$$

Adding the first two on the left yields the third left hand side, hence (1).

Last problem in the assignment:

Let $F=u+i v$ is analytic. By the Cauchy-Riemann, we have that $u_{x}=v_{y}$. Thus, applying the theorem 1.5.1 (for simply connected domains), we can construct w, so that

$$
w_{y}=u, w_{x}=v .
$$

Hence, $F=u+i v=w_{y}+i w_{x}$. In addition, by the second Cauchy-Riemann

$$
w_{x x}=v_{x}=-u_{y}=-w_{y y},
$$

whence w is harmonic. This is clearly unique (up to a constant). Indeed, assuming another \tilde{w} with this properties, it follows that $\tilde{w}_{x}=w_{x}$ and $\tilde{w}_{y}=w_{y}$, whence $\tilde{w}=w+$ const .

The statement for z follows in a similar manner (in fact, one can take z to be the conjugate harmonic function of w.)

