
Notes MATH 800

May 3, 2019

1 Week I

We have covered the “Fundamental concepts”, Chapter I, sections 1.1, 1.2. In particular,

we are identifying C ' R2. Then, we introduced holomorphic functions and derived the

Cauchy-Riemann (CR) equations, section 1.4. For each holomorphic function f = u + i v ,

we have that {
ux = vy

uy =−vx .
(1) 20

In the process, we discussed the relation between the derivatives ∂z ,∂z̄ and the regular

derivatives ∂x ,∂y . In particular, CR equations imply that both u, v are harmonic functions,

which impacts the subject in a dramatic way, and also relates it to classical PDE theory.

The main result that we needed for Section 1.5, is an extension of Theorem 1.5.1.

defi:10 Definition 1. We say that a setΩ⊂C is connected, if for any two points z0, z1, there exists a

curve γ inΩ connecting the two points, that is, a map γ : [0,1] →Ω, so that γ(0) = z0,γ(1) =
z1. Open and connected sets are called domains.

We say thatΩ is simply connected, if the interior of each closed curve inΩ belongs toΩ.

Then, we have the following useful result.

theo:10 Theorem 1. Let Ω ⊂ C is a simply connected open set. Suppose that F,G are two C 1(Ω)

functions on it. Then, the following are equivalent

• Fy =Gx
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• There exists unique (up to a constant) function u ∈C 2(Ω), so that ux = F,uy =G.

We showed by an example that simple connectedness is a necessary condition for The-

orem
theo:10
1 to hold. We used Theorem

theo:10
1 to derive some further useful results, like every holo-

morphic function in a simply connected domain has a holomorphic antiderivative (ex-

tension of Theorem 1.5.3). Also, for every harmonic function u, there is a holomorphic

function F , unique up to a constant, so that ℜF = u (extension of Corollary 1.5.2).

2 Week II

We discussed line integrals in the complex plane setting. In particular, we have introduced

integral over curve as follows - for every continuous function f on an open set U ⊂C, and

for a smooth curve γ in U ,∫
γ

f (z)d z =
∫ 1

0
f (γ(t ))(γ′1(t )+ iγ′2(t ))d t .

where γ(t ) = γ1(t )+ iγ2(t ) is a particular parametrization. One then has the following

formula.

prop:20 Proposition 1. Let f : U → C be a holomorphic mapping, U open and γ : [a,b] → U is a

curve. Then, ∫
γ

∂ f (z)

∂z
d z = f (γ(b))− f (γ(a)).

Note that while this lemma looks deceptively similar to the fundamental theorem of

calculus, it requires holomorphicity of f , and not just say f ∈C 1(U ).

Another remark is that the particular parametrization of γ does not affect the value of

the integral. That is for all increasing C 1 functions φ : and for γ̃ := γ◦φ, we have∫
γ

f (z)d z =
∫
γ̃

f (z)d z,

defi:20 Definition 2. Let U be an open set in C. Let f : U →C be a function. Then, we say that f is

complex differentiable at z0 ∈U , if the limit exists

lim
z→z0

f (z)− f (z0)

z − z0
.
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We denote the limit by f ′(z)

It turns out that this notion is equivalent with holomorphicity. In fact, we have the

following equivalence theorem.

theo:20 Theorem 2. Let U ⊂ C is an open set and f ∈ C 1(U ). Then, f is holomorphic on U if and

only if f ′(z) exists for all z ∈U . In addition,

f ′ = ∂ f

∂z

Finally, we considered a “one point” extension of Theorem
theo:10
1. More specifically,

theo:21 Theorem 3. Let Ω ⊂ C is a simply connected open set, P ∈ Ω. Suppose that F,G are two

continuous functions onΩ, with continuous derivatives inΩ\{P }). That is F,GC 1(Ω\{P })∩
C (Ω) functions on it. Assume in addition

Fy =Gx , (x, y) 6= P.

Then, there exists h ∈C 1(Ω), so that

hx = F,hy =G ,

including at (x, y) = P.

This allows us to give the anti-derivative condition as follows.

prop:24 Proposition 2. Let Ω ⊂ C is a simply connected open set, P ∈ Ω. Suppose that F is holo-

morphic in Ω \ {P } and continuous on Ω. Then, there exists H, holomorphic on U , so that

H ′(z) = F .

3 Week III

In this short week, we have covered the Cauchy theorem and Cauchy integral formula.

These deal with complex integrals, so we will use the notation
∮

, whenever we integrate

over closed curves. Also, if nothing else is specified, we will assume by default that the

integration is over closed curves with positive (i.e. counterclockwise) orientation1.

1In other words, following the direction of the curve, the interior should be on your left.
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Theorem 4. (Cauchy theorem ) Let Ω be simply connected domain and f is holomorphictheo:30
onΩ. Then, for any closed C 1 curve γ : [0,1] →Ω, we have∮

γ
f (z)d z = 0.

An interesting corollary of the Cauchy theorem is the following.

cor:12 Corollary 1. Let U be an open subset of C. Let γ1,γ2 be two curves, with the same index, so

that Int (γ1) ⊂ Int (γ2). Assume that f is holomorphic in Int (γ2) \ Int (γ1). Then,∮
γ1

f (z)d z =
∮
γ2

f (z)d z.

In other words, whenever we integrate a holomorphic function on a given curve, and we can

continuously deform the given curve to another one, without encountering singularities of

f , the value of the integral remains the same.

For the Cauchy integral formula, one prepares by evaluating the following complex in-

tegral ∮
|ξ−z0|=r

1

ξ− z
= 2πi

whenever z : |z − z0| < r .

Theorem 5. (Cauchy integral formula) Let Ω be a simply connected domain in C and f istheo:40
holomorphic on it. Let γ be a C 1 closed curve inΩ, which winds around once around z ∈Ω.

Then,

f (z) = 1

2πi

∮
γ

f (ξ)

ξ− z
dξ.

4 Week IV

The applications of the Cauchy theorem and the Cauchy integral formula are nothing

short of spectacular. We are going through some this week.

theo:50 Theorem 6. Let U be an open subset of C and f ∈ H(U ). Then, f ∈ C∞(U ) and for every

integer k and for every curve γ with index one around z ∈U

f (k)(z) = k !

2πi

∮
γ

f (ξ)

(ξ− z)k+1
dξ
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Another corollary is

cor:20 Corollary 2. Let U be an open subset of C and f ∈ H(U ). Then, f ′ is also holomorphic on

U .

In the same spirit, one can in fact define “analytic extensions”.

prop:17 Proposition 3. Let U be an open subset of C and f ∈ H(U ). Let γ be a C 1 closed curve in U

and φ ∈C (γ). Introduce, for any z ∈ Int (γ),

f (z) := 1

2πi

∮
γ

φ(ξ)

ξ− z
dξ.

Then, f ∈ H(Int (γ)).

One is then naturally left to the question for a close relation between the “boundary

values" φ and the function inside f . The next example shows that in general there is not

much there.

Example 1. For any z : |z| < 1,e:10 ∫
|ξ|=1

ξ̄

ξ− z
dξ= 0.

In other words, the function φ(ξ) = ξ̄ generates the trivial function f (z) = 0 inside the unit

disk.

The next result is a beautiful statement due to Morera, which says that the Cauchy the-

orem is essentially reversible.

Theorem 7. (Morera) Let Ω be an open connected subset of C and f ∈C 0(Ω). Assume thattheo:mor
for every closed C 1 curve γ, we have ∮

γ
f (z)d z = 0.

Then, f is holomorphic insideΩ.

We then discussed complex power series. We have shown
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le:abel Lemma 1. Let
∑∞

k=0 ak (z0−P )k converges for a fixed point z0 6= P. Then, it converges for all

w : |w −P | < |z0 −P |.

This allows one to show that the convergent set of a given power series is a ball, with

radius called radius of convergence. This is defined as follows

r = sup{|w −P | :
∞∑

k=0
ak (w −P )k converges}.

5 Week V

We have the following theorem (which encompasses several results in the book).

prop:37 Proposition 4. For any power series
∑∞

k=0 ak (z −P )k , there is a (extended) number r : 0 ≤
r ≤∞, so that

1. If r = 0, the series diverges for all z 6= P.

2. If z =∞, then the series converges for all z.

3. If 0 < r <∞, then the series converges absolutely for all w : |w −P | < r and diverges

for all w : |w −P | > r .

Moreover, r can be found as follows

r = 1

limsupk→∞ |ak |
1
k

.

Finally, for any ε > 0, we have that the series
∑∞

k=0 ak (z −P )k converges uniformly in any

disc of the form D(P,r −ε).

Note: The convergence may not be uniform on D(P,r ).

Another theorem states that non-trivially convergent power series are holomorphic

functions.
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theo:24 Theorem 8. Let
∑∞

j=0 a j (z −P ) j has radius of convergence r > 0. Then,

f (z) :=
∞∑

j=0
a j (z −P ) j ,

is holomorphic in D(P,r ). Moreover, each derivative may be evaluated as follows

f (k)(z) =
∞∑

j=k
j ( j −1) . . . ( j −k +1)a j (z −P ) j−k ,

where the series representing the derivatives has the same radius of convergence r .

We have also the following uniqueness result. We have much more general result com-

ing up later on, which requires more background material.

prop:45 Proposition 5. Suppose
∑∞

j=0 a j (z −P ) j ,
∑∞

j=0 b j (z −P ) j are two power series, which con-

verge in D(P,r ), r > 0 and in addition

∞∑
j=0

a j (z −P ) j =
∞∑

j=0
b j (z −P ) j

for each z : |z −P | < r . Then, the two series are identical, that is a j = b j , j = 0, . . .

6 Week VI

Last week, we have seen that power series with non-trivial radius of convergence define

holomorphic functions.

defi:ana Definition 3. Let U be an open set. We say that a function f : U → C, if for every P ∈ U ,

there is r > 0, so that

f (z) =
∞∑

j=0
a j (z −P ) j

for all z : |z −P | < r . Then necessarily a j = f ( j )(P )
j ! .

So, holomorphic functions are analytic functions. The question for the converse is set-

tled in the following theorem.
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theo:45 Theorem 9. Let U be an open set and f ∈ H(U ). Let P ∈U , D(P,r ) ⊆U . Then,

f (z) =
∞∑

j=0

f ( j )(P )

j !
(z −P ) j

for all z : |z−P | < r . That is, holomorphic functions are analytic. The radius of convergence

at each point P satisfies r ≥ di st (P,∂U ).

The next topic is about the Cauchy estimates and its corollaries.

theo:54 Theorem 10. Let U be an open set and f ∈ H(U ). Let P ∈U , D(P,r ) ⊆U . Set

M = supz∈D(P,r ) | f (z)|. Then, for each k = 1,2, . . .

| f (k)(P )| ≤ Mk !

r k
.

defi:ent Definition 4. We say that a function f :C→C is entire, if it is holomorphic on the whole C.

Theorem 11. (Liouville) An entire bounded function is a constant.theo:Liou

In fact, assume that

| f (z)| ≤C (1+|z|)k ,

for some integer k and f is entire. Then, f is a polynomial of degree at most k.

Note: These types of results are usually applied in the negative - “An entire function

cannot have polynomial growth at infinity, unless it is a polynomial”. That is, non-trivial

(i.e. non-polynomial) entire function grow faster than any polynomial at infinity.

7 Week VII

This week, we deal with uniform limits of holomorphic functions. The main notion is

uniform convergence on the compact subsets.

defi:ucs Definition 5. Let U be an open subset of C. We say that a sequence of functions f : U → C

converges uniformly on the compact subsets of U to f , denoted f j âcomp f , if for every

K ⊂U , K compact, and for every ε> 0, there is N = N (ε,K ), so that for all n > N

sup
z∈K

| fn(z)− f (z)| < ε.
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Equivalently, there is the Cauchy formulation, which states that uniform convergence over

the compact subsets holds if for every K ⊂U , K compact, and for every ε > 0, there is N =
N (ε,K ), so that for all n > m > N

sup
z∈K

| fn(z)− fm(z)| < ε.

The main theorem states that set of holomorphic functions on U is closed set under the

operation “uniform convergence over the compact subsets of U ”.

theo:65 Theorem 12. Let U be an open set in C. Let { f j } be a family of holomorphic functions on

U , which converges uniformly over the compact subsets to f . Then, f is holomorphic on U .

There is the following useful corollary of it.

theo:65 Corollary 3. Let U be an open set in C. Let { f j } be a family of holomorphic functions on U ,

which converges uniformly over the compact subsets to f . Then, for each k f (k)
j â f (k).

Next, we discussed the zeros of holomorphic functions.

theo:70 Theorem 13. Let U be a connected set, f ∈ H(U ). Then, the set of zeros, Z = {z ∈U : f (z) =
0} does not accumulation points inside of U , unless f = 0. Equivalently, assume that there

is a sequence z j ∈ Z , lim j z j = Z0 ∈U . Then f = 0 in U .

Note: This does not exclude the possibility that for a non-trivial holomorphic function,

there is an accumulation point Z0 on ∂U . In fact, f (z) = sin( 1
1−z ) has zeros zn = 1− 1

nπ ,

which accumulate to 1 ∈ ∂D(0,1).

Some corollaries of Theorem
theo:70
13 are as follows.

cor:5 Corollary 4. Let U be a connected set, f ∈ H(U ), so that f |D(P,r ) = 0 for some P ∈U . Then

f = 0 on U .

cor:10 Corollary 5. Let U be a connected set, f , g ∈ H(U ), so that f g = 0 on U . Then either f = 0

or g = 0. That is, the algebra H(U ) is an integral domain.

Next topic is meromorphic functions.
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defi:sing Definition 6. Let U is an open set and P ∈U . We say that P is an isolated singularity for a

function f , if f ∈ H(U \ {P }). For a function with a finitely many isolated singularities in a

domain U , we say that it is meromorphic on U .

Clearly, there are three distinct possibilities for isolated singularities.

1. f is bounded in a neighborhood of P . That is, there is M > 0, and r > 0, so that

D(P,r ) ⊂U and

sup
z∈D(P,r )\{P }

| f (z)| ≤ M .

2. limz→P | f (z)| = +∞

3. neither of the previous two holds.

The following theorem takes care of the first alternative.

Theorem 14. (Riemann removability theorem) Let Ω be an open set, P ∈Ω be an isolatedtheo:98
singularity of f ∈ H(Ω\{P }), so that f is bounded in a neighborhood of P. Then, limz→P f (z)

exists and the function

f̃ (z) =
{

f (z) z 6= P
limz→P f (z) z = P

is a holomorphic onΩ.

In other words, f admits a holomorphic extension on the whole domain.

8 Week VIII

We have the following result about essential singularities.

Theorem 15. (Casorati-Weierstrass) Let f ∈ H(D(P,r0)\{P }) and P is an essential singular-CW
ity for f . Then, for each r : 0 < r < r0, f (D(P,r ) \ {P }) is dense in C.

Next topic is Laurent series.
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Lau Definition 7. We say that a double infinite series
∑∞

j=−∞ a j is convergent, if

−1∑
j=−∞

a j <∞,
∞∑

j=0
a j <∞

Laurent series are series in the form

∞∑
j=−∞

a j (z −P ) j .

Note: Laurent series do not need to converge for any z

We have the following general result about Laurent series.

theo:Lau Theorem 16. Assume that a Laurent series
∑∞

j=−∞ a j (z −P ) j converges for some point z ∈
C. Then, there exists unique 0 ≤ r1 ≤ r2 ≤∞, so that

1. If r1 < r2,
∑∞

j=−∞ a j (z−P ) j converges for all r1 < |z−P | < r2, whence f (z) =∑∞
j=−∞ a j (z−

P ) j is holomorphic function in the annulus D(P,r2) \ D(P,r1).

2. The series
∑∞

j=−∞ a j (z −P ) j diverges for all |z −P | < r1, r2 < |z −P |.

3. For each r1 < s1 < s2 < r2,
∑∞

j=−∞ a j (z −P ) j converges uniformly in s1 ≤ |z −P | ≤ s2.

Finally, there is the formula for the coefficients

a j = 1

2πi

∫
|ξ−P |=r

f (ξ)

(ξ−P ) j+1
dξ,r1 < r < r2. (2) cof

In particular, this implies the uniqueness of the Laurent series for a given function f .

We saw that Laurent series are meromorphic functions. Conversely, we show that any

meromorphic function has a Laurent series, at least in a neighborhood of the singular

points. The theorem is a bit more general than that.

theo:L1 Theorem 17. Let 0 ≤ r1 < r2 ≤∞ and f ∈ H(D(P,r2)\D(P,r1)). Then, for z : r1 < |z−P | < r2,

there is the representation

f (z) =
∞∑

j=−∞
a j (z −P ) j

where a j are given by (
cof
2). In particular, for isolated singularities, r1 = 0 and we have con-

vergence in the punctured neighborhood D(P,r ) \ {P }.
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We can read the type of isolated singularities from the Laurent series.

theo:L2 Theorem 18. Let f ∈ H(D(P,r )\ {P }), with a Laurent series f (z) =∑∞
j=−∞ a j (z−P ) j . Then,

• P is a removable singularity if and only if a j = 0 for all j < 0.

• P is a pole if and only if there exists N ≥ 1, so that a j = 0 for all j <−N , but a−N 6= 0.

• P is essential singularity if and only if there is a sequence k j →+∞, so that a−k j 6= 0.

9 Week IX

Next topic is calculus of residues.

residue Definition 8. Let U ⊂ C be an open set and P ∈U . Let f ∈ H(U \ {P }). If the Laurent series

of f at P has the form

f (z) =
−2∑

j=−∞
a j (z −P ) j + R

z −P
+

∞∑
k=0

ak (z −P )k ,

we say that R is the residue of f at the point P. We denote it R = Res f (P ).

theo:143 Theorem 19. Suppose U is an open simply connected subset of C, let {P1, . . . ,Pn} are iso-

lated singularities of f , f ∈ H(U \ {P1, . . . ,Pn}). Let R j = Res f (P j ). Then, for every closed

curve γ in U , not passing through any P j , j = 1, . . . ,n,∮
γ

f (z)d z =
n∑

j=1
R j

∮
γ

1

z −P j
d z

Moreover, 1
2πi

∮
γ

1
z−P j

d z is an integer, usually referred to as index of the curve γ with respect

to P.

Here is an efficient way to compute residues.

prop:index Proposition 6. • Let P be a pole for f . Then,

Res f (P ) = lim
z→P

(z −P ) f (z).
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• If P is a pole of order k, then

Res f (P ) = 1

(k −1)!

(
(z −P )k f (z))

)(k−1)
(P ).

Next, we show a general result that counts the number of zeros for holomorphic func-

tions. Before that,

defi:zero Definition 9. We say that a zero z0 of a holomorphic function f ∈ H(D(z0,ε)) is of multi-

plicity k,k ∈N, if

f (z) = (z − z0)k g (z),

where g is also holomorphic in a neighborhood of z0 and g (z0) 6= 0.

Theorem 20. (Argument principle for holomorphic functions) Let U be an open set andcountingz
f ∈ H(U ). Suppose that D(P,r ) ⊂U , so that f |∂D(P,r ) 6= 0. Then,

1

2πi

∮
|ξ−P |=r

f ′(ξ)

f (ξ)
dξ= n1 + . . .+nl ,

where n1,n2, . . . ,nl are the multiplicities of the zeros z1, . . . , zl inside D(P,r ).

We can generalize this result to meromorphic functions as well.

Theorem 21. (Argument principle for meromorphic functions) Let U be an open set and fcountingzp
is meromorphic on U . Suppose that D(P,r ) ⊂ U , so that f has neither poles nor zeros on

∂D(P,r ) = {ξ : |ξ−P | = r }. Then,

1

2πi

∮
|ξ−P |=r

f ′(ξ)

f (ξ)
dξ= n1 + . . .+nl − (k1 + . . .+km).

where n1,n2, . . . ,nl are the multiplicities of the zeros z1, . . . , zl inside D(P,r ) and k1, . . . ,km

are the orders of the poles q1, . . . , qm .

10 Week X

Some more zero counting. The next result is saying that if two holomorphic functions on

a domain are closed, then they have the same number of zeros.
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Theorem 22. (Rouche’s theorem) Let U be an open set in C and f , g : U → C are holomor-theo:rou
phic. Let P ∈U ,D(P,r ) ⊂C, so that for each ξ : |ξ−P | = r ,

| f (ξ)− g (ξ)| < | f (ξ)|+ |g (ξ)|. (3) po

Then,
1

2πi

∮
|ξ−P |=r

f ′(ξ)

f (ξ)
dξ= 1

2πi

∮
|ξ−P |=r

g ′(ξ)

g (ξ)
dξ

That is, the number of zeros of f inside D(P,r ), counted with multiplicities coincides with

the number of zeros of g inside D(P,r ).

Remark: The condition (
po
3) is equivalent to requiring that f (ξ)

g (ξ) ∉R−.

Theorem 23. (Hurwitz’s theorem) Let U be an open and connected subset in C and { fn}n :theo:hou
U → C are holomorphic and nowhere vanishing on U . If the sequence fn converges on the

compact subsets of U to f , then f is either identically zero or f vanishes nowhere on U .

Theorem 24. (Schwartz lemma) Let f be holomorphic on the unit disc D(0,1). Assumetheo:schwartz
that

1. f (z)| ≤ 1, z ∈ D(0,1)

2. f (0) = 0

Then, | f (z)| ≤ |z| and | f ′(0)| ≤ 1. Moreover, if either | f (z0)| = |z0| or | f ′(0)| = 1, then there

exists α : |α| = 1, so that f (z) =αz.

11 Week XI

11.1 Infinite products and applications

defi:is Definition 10. We say that the infinite product
∏∞

n=1(1+an) converges, if

1. Only finitely many an are equal to −1.
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2. Let N0 be so large that for all n > N0, an 6= −1. Then, we require that

lim
N→∞

N∏
n=N0+1

(1+an)

converges, and the limit is non-zero.

Note that the convergence of
∏∞

n=1(1+an) implies limn an = 0.

Proposition 7. The series
∑

n |an | converges if and only if
∏∞

n=1(1+|an |) converges.

Note that the potential problems enlisted in Definition
defi:is
10 do not apply in the case of

the products in the form
∏∞

n=1(1+ |an |). We say that the product
∏∞

n=1(1+ an) converges

absolutely, if
∏∞

n=1(1+|an |) converges.

Proposition 8. Absolute convergence implies convergence for products. That is, if the prod-

uct
∏∞

n=1(1+|an |) converges, then
∏∞

n=1(1+an) converges.

In particular, if
∑

n |an | converges, then
∏∞

n=1(1+an) converges.

Sometimes, this is used as follows: in order to check the convergence of
∏∞

k=1 ak , it

suffices to check the convergence of
∑

k |1−ak |.

theo:prodconv Theorem 25. Suppose that U ⊂C is an open set and f j ∈ H(U ), so that
∑

j | f j (z)| converges

uniformly on the compact subsets of U . More precisely, for each compact subset K in U , and

for each ε> 0, there exists N = N (K ,ε), so that

sup
z∈K

∑
j>N

| f j (z)| < ε

Then, the sequence of partial products FN (z) = ∏N
n=1 fn(z) converges, uniformly on the

compact subsets to a function F ∈ H(U ). Moreover, F (z0) = 0 for some z0 ∈U if and only if

there exists j0 : f j0 (z0) =−1 and the multiplicity of z0 in the equation F (z) = 0 matches the

multiplicity of z0 in f j0 (z) =−1.

The next result is the Weierstrass factorization theorem. We need a few lemmas.
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Lemma 2. For the elementary Weierstrass factors, Ep (z) = (1− z)ez+ z2

2 +...+ zp

p , we have for

each z : |z| ≤ 1,

|Ep (z)−1| ≤ |z|p+1.

That is, Ep (z) approximates 1 well.

theo:w Theorem 26. Let {an} be a sequence of non-zero complex numbers, without accumulation

points (but they are allowed to repeat themselves). Suppose that pn are integers, so that for

all r > 0, there is ∑
n

(
r

|an |
)pn+1

<∞

Then, ∞∏
n=1

Epn

(
z

zn

)
converges, uniformly on the compact subsets of C to an entire function F . Moreover the

zeros of F are exactly the sequence an .

As a corollary, we can construct an entire function, with any prescribed set of zeros, as

long as they do not have accumulation point.

theo:28 Theorem 27. Let {a j } be a sequence in C without accumulation points (but repetitions are

allowed). Then, there exists an entire function f , so that f has exactly these zeros. In fact,

assuming that 0 appears exactly m times, one can take

f (z) = zm
∞∏

n=m+1
En−1

(
z

an

)
.

This allows us to state the following factorization theorem.

theo:29 Theorem 28. Let f be entire, which vanishes to order m at zero. Suppose {an} are the other

zeros of f , listed with their multiplicities. Then, there exists an entire function Q : Q(z) 6= 0,

so that

f (z) = zmQ(z)
∞∏

n=m+1
En−1

(
z

an

)

16



12 Week XII

12.1 Blashke products and Jensen’s formula

For a : |a| < 1 and z ∈ D(0,1), define a function

Ba(z) = z −a

1− āz
.

It is then easy to check

• Ba ∈ H(D(0,1)), Ba(a) = 0, Ba(z) 6= 0 whenever z 6= 0.

• |Ba(z)| = 1 if and only if |z| = 1.

jensen Theorem 29. Let f be holomorphic in a neighborhood of D(0,r ), f (0) 6= 0. Let a1, . . . , ak

are the zeros of f , listed with their multiplicities. Then

ln | f (0)|+
k∑

j=1
ln

(
r

|a j |
)
= 1

2π

∫ 2π

0
ln | f (r e iθ)|dθ.

12.2 Zeros of bounded holomorphic functions on D(0,1)

The next theorem gives a quantitative bounds on the behavior of the zeros of a bounded

holomorphic functions inside D(0,1). Namely, consider that there could be infinitely many

zeros of such functions in D(0,1), and they should be accumulating to the boundary.

theo:34 Theorem 30. Let f 6= const . is a bounded holomorphic function on D(0,1) and {a j } are

the zeros of f in D(0,1). Then
∞∑

j=1
(1−|a j |) <∞. (4) sum

On the other hand, there is the following result, which shows that (
sum
4) is sharp.

theo:35 Theorem 31. Let {a j } ⊂ D(0,1) with
∑∞

j=1(1−|a j |) <∞. Then, there exists a bounded holo-

morphic function on D(0,1), with exactly these zeros. In fact, letting a1 = . . . = am = 0,

a j 6= 0, j > m, we can take

f (z) = zm
∞∏

j=m+1

−ā j

|a j |
Ba j (z).

17



13 Prime number theorem

Denoting the set of prime numbers by P , introduce the function

π(n) = #{p ∈P : 2 ≤ p ≤ n}.

Use the notation f ∼ g for any two functions f , g : R+ → R+, with limx→∞
f (x)
g (x) = 1. The

prime number theorem is easy to state and hard to prove.

Theorem 32. (Prime number theorem)36

π(n) ∼ n

ln(n)
.

We approach the proof in a number of preparatory steps. Most of them are of indepen-

dent interest, as they appeal to other special functions or techniques that are useful in

other contexts.

13.1 The Riemann zeta function - round one

Introduce the Riemann zeta function

ζ(z) :=
∞∑

n=1

1

nz
.

Since 1
|nz | = 1

nℜz and since
∑∞

n=1
1

na <∞, for all a > 1, it is easy to see that with this defini-

tion

rzf Proposition 9. ζ is a holomorphic function inΩ= {z : ℜz > 1}.

There is also the product representation

Proposition 10. (Euler product formula) For z : ℜz > 1, there is the representationrzf2

1

ζ(z)
= ∏

p∈P

(
1− 1

pz

)
.

Implicitly, the function on the right is a holomorphic function in Ω. In particular, ζ does

not vanish inΩ= {z : ℜz > 1}.

18



This can be used to establish the following nontrivial estimate.

primeinf Proposition 11. ∑
p∈P

1

p
=∞.

This not only says that the primes are an infinite set, but gives more detailed quantita-

tive information on how many there are.

13.2 The Gamma function

Introduce,

Γ(z) :=
∫ ∞

0
t z−1e−t d t .

This is a well-defined and holomorphic in {z : ℜz > 0}. The central issue here is the im-

proper integration close to the singularities at 0 and ∞. At ∞ it is always good, because

of the exponential decay provided by e−t . At zero however, we need integral of the form∫ 1
0

1
t a d t , a < 1, hence the restriction ℜz > 0.

Proposition 12. (meromorphic extension of Γ) The function Γ satisfies the formulaanext

Γ(z +1) = zΓ(z), ℜz > 0.

This can be used to construct an analytic extension on the set C\{0,−1, . . .}. In addition, the

non-positive integers are simple poles for G.

Proposition 13. For z : ℜz > 1, there is another representation of the Riemann zeta,rzf3

ζ(z) = 1

Γ(z)

∫ ∞

0

t z−1e−t

1−e−t
d t .

Remark: Here we need again ℜz > 1 to ensure the convergence of the integral at the

singularity at zero - note that (1−e−t ) ∼ t for small t .

19



13.3 The function θ

Set

θ(x) = ∑
p∈P :2≤p≤x

ln p.

theta Lemma 3. The following are equivalent

1. θ(x) ∼ x

2. π(x) ∼ x
ln(x) .

In other words, the prime number theorem follows from and it is actually equivalent to

θ(x) ∼ x.

There is the following

theta2 Lemma 4. If limx→∞
∫ x

1
θ(t )−t

t 2 d t exists, then θ(x) ∼ x.

In other words, this reduces the proof of the prime number theorem to∫ ∞

1

θ(t )− t

t 2
d t <∞. (5) 98

13.4 TheΦ function

We start with an useful lemma, which says that the Riemann zeta has an analytic exten-

sion beyond ℜz > 1.

riem2 Lemma 5. The Riemann zeta function, originally defined on ℜz > 1, has an analytic ex-

tension to ℜz > 0, with a simple pole at 1. More precisely, the function

ζ(z)− 1

z −1

can be extended analytically to ℜz > 0.
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With this extension in mind (and uniqueness of extensions, see the first problem in

Set 5), we can now state the Riemann hypothesis, arguably the most famous open math

problem - it is the conjecture that all the zeros of ζ are on the vertical line ℜz = 1
2 .

Introduce for z : ℜz > 1,

Φ(z) = ∑
p∈P

ln(p)

pz
.

Clearly Φ ∈ H({ℜz > 1}), as the convergence over the compact subsets is guaranteed by

the M-test. Using the Euler product formula, Proposition
rzf2
10, we show

le:ph Lemma 6. For z : ℜz > 1,

Φ(z) =−ζ
′(z)

ζ(z)
+G(z), (6) phi

where G is a holomorphic function in ℜz > 1
2 .

As a consequence, the function Φ, originally defined in ℜz > 1, is thus extended to a

meromorphic function in ℜz > 1
2 . More precisely,

• Φ has a simple pole at 1 and in fact Φ(z)− 1
z−1 is holomorphic in a neighborhood of

1.

• The other possible poles ofΦ, in ℜz > 1
2 , are exactly at the zeros of ζ.

Remark: Note that the Riemann hypothesis states precisely that all zeros of ζ are on

ℜz = 1
2 , soΦ should not have poles other than 1.

rez1 Lemma 7. The Riemann zeta function ζ does not have zeros on ℜz = 1. As a consequence

of (
phi
6), Φ has an analytic extension in a neighborhood of ℜz = 1, and it has only a simple

pole at 1. Said otherwise,Φ(z)− 1
z−1 has an analytic extension in an open neighborhood of

{ℜz ≥ 0}.

The functionΦ has the following representation.

phi2 Lemma 8. For z : ℜz > 1

Φ(z) = z
∫ ∞

0
e−ztθ(e t )d t .
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The quantity in (
98
5), which gives us a sufficient condition under which the prime num-

ber theorem holds, can now be rewritten as∫ ∞

0
(e−tθ(e t )−1)d t <∞. (7) 99

13.5 The function f

Denoting f (t ) := e−tθ(e t )−1, the goal is to show
∫ ∞

0 f (t )d t <∞. The following lemma is

an almost direct consequence of Lemma
rez1
7 and the representation in Lemma

phi2
8.

lema:f Lemma 9. The function g (z) := ∫ ∞
0 f (t )e−zt d t, which is well-defined holomorphic func-

tion in ℜz > 0 has an analytic extension in an open neighborhood of {ℜz ≥ 0}.

Remark: The statement does not imply that there is a δ > 0, for which there is an ana-

lytic extension to the open set {z : ℜz > −δ}. Namely, the boundary of the open set may

converge as ℑz →∞ to the line ℜz = 0. What is true however is: for every R > 0, there ex-

ists δ= δR (with virtually no control of δR ), so that the function is analytically extendable

in a neighborhood of the form

UR = {z : |z| < R,ℜz >−δR }.

Another, number-theoretic fact is

lema:f2 Lemma 10. There is C , so that θ(x) < C x. As a consequence f : R+ → R+ is a bounded

function.

It now remains to put together the fact that f is bounded and Lemma
lema:f
9 with the follow-

ing independently interesting result to conclude that
∫ ∞

0 f (t )d t <∞.

Theorem 33. (Integral theorem) Let f be a bounded, locally integrable function. Then, wetheo:integral
define the Laplace transform of f in the right-half space as follows

g (z) :=
∫ ∞

0
f (t )e−zt d t ,ℜz > 0.

Note that g is well-defined and holomorphic in ℜz > 0. Assuming that g has an extension

to an open neighborhood of ℜz = 0, then
∫ ∞

0 f (t )d t <∞ and g (0) = ∫ ∞
0 f (t )d t.
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