MATH 961: PROJECT I DUE: SEPT. 28, 2020

- (1) Problem 5.8.1/page 288.
- (2) Related to the previous problem, show that if $A = A^*$ and E is an A invariant subspace of H, then we can the split $H = E \oplus E^{\perp}$ and define $A_E := P_E A$: $E \to E$ and $A_{E^{\perp}} = P_{E^{\perp}}A : E^{\perp} \to E^{\perp}$. Show that A_E and $A_{E^{\perp}}$ are self-adjoint as well and

$$\sigma(A) = \sigma(A_E) \cup \sigma(A_{E^{\perp}}).$$

- (3) Let A be densely defined operator. Assume that it is closeable. Show that it has a smallest close extension, i.e. an operator \overline{A} so that every close extension of A is an extension of \overline{A} as well. Show that $\Gamma(\overline{A}) = \overline{\Gamma(A)}$. **Hint:** For the existence of \overline{A} , use Zorn's lemma, with appropriate order. For every closed extension, S, the direction $\overline{\Gamma(A)} \subset \Gamma(S)$ is obvious. For the other one, construct a close extension R, with $\Gamma(R) = \overline{\Gamma(A)}$. Then, it should be $R = \overline{A}$, why?
- (4) For the Hilbert space $L^2(\mathbf{R})$, define the operator Af := xf(x), with domain $D(A) = \{f \in L^2(\mathbf{R}) : xf(x) \in L^2(\mathbf{R})\}$. Show that A is densely defined and closed operator. Show that $\sigma(A) = C\sigma(A) = \mathbf{R}$. Write down the resolvent $(\lambda A)^{-1}$ for $\lambda \notin \mathbf{R}$.
- (5) Problem 6.5.1 a), d), e), page 342.
- (6) Problem 6.5.2/page 342.