<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(20)</td>
<td></td>
<td></td>
<td>(20)</td>
<td></td>
<td></td>
<td>(20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total (200)
Some useful formulas

To be filled
Multiple choice questions

(1) Let \(b = \langle 1, 0, 4 \rangle \), \(a = \langle 2, 0, -1 \rangle \). Find \(\text{proj}_a b \).

(A)
(B)
(C)
(D)

(2) Find \(\langle 2, 3, 1 \rangle \times \langle 1, 0, 5 \rangle \)

(A)
(B)
(C)
(D)

(3) Find the sum of the series

\[
\sum_{n=1}^{\infty} \frac{(-1)^n \pi^n}{3^{2n}(2n)!}.
\]

(A)
(B)
(C)
(D)

(4) Find the distance from the point \(P(1, 3, 2) \) to the plane \(2x + 3y - 4z = 1 \).

(A)
(B)
(C)
(D)
(5) Find the Maclaurin series for the function

\[f(x) = \ln(4 - x). \]

Determine the interval of convergence.

(6) Find the sum of the series

\[\sum_{n=1}^{\infty} \frac{(-1)^n}{n^6}, \]

within two decimals. Justify your answer.
(7) Find the area inside $r = 3 \cos(\theta)$, which is outside $r = 1 + \cos(\theta)$.
 Remark: Here you will normally be supplied with a picture.

(8) Find the length of the curve $r = \theta^2$, $0 \leq \theta \leq 2\pi$.
(9) A woman walks west on the deck of a ship at 3 mph. The ship is moving north at 22 mph. Find the speed and the direction of the woman.

(10) Find the angle between the planes $2z = 4y - x$ and $3x - 12y + 6z = 1$.
(11) Find the line of intersection of the planes \(x + y + z = 2, \ x - y + z = 3\).

(12) Find the equation of the plane that passes through the point \(P(1, 5, 1)\) and is perpendicular to the planes \(2x + y - 2z = 2, \ x + 3z = 4\).