PROJECT II - MATH 800 DUE MARCH 21ST, 2019

(1) Problem 4/p. 94.
(2) Let D be a connected domain, not necessarily simply connected. Assume that there is a sequence of holomorphic on D functions $\left\{f_{j}\right\}$, so that $f_{j} \rightrightarrows f$, i.e. it converges uniformly on the compact subsets of D to a holomorphic function ${ }^{1}$ f. More precisely, this means

$$
\forall K \Subset D, \forall \epsilon>0, \exists N=N(\epsilon, K): j>N, \sup _{z \in K}\left|f_{j}(z)-f(z)\right|<\epsilon
$$

Prove that

$$
f_{j}^{\prime} \rightrightarrows f^{\prime}
$$

Hint: Let $K \Subset D$. Choose a closed curve γ inside D, with positive orientation, so that K is in the interior of γ. Then, by the Cauchy integral formula,

$$
f_{j}(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f_{j}(\xi)}{\xi-z} d \xi
$$

and hence

$$
f_{j}^{\prime}(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f_{j}(\xi)}{(\xi-z)^{2}} d \xi
$$

Use now the convergence of f_{j} on the compact γ to conclude.
(3) Let f be a holomorphic function on a domain D. Let $z_{0} \in D: f\left(z_{0}\right)=0$. Prove that

$$
g(z):= \begin{cases}\frac{f(z)}{\left(z-z_{0}\right)} & z \neq z_{0} \\ f^{\prime}\left(z_{0}\right) & z=z_{0}\end{cases}
$$

is holomorphic in D.
Note that as a consequence, one can always write $f(z)=\left(z-z_{0}\right) g(z)$ with $g \in H(D)$, whenever $f\left(z_{0}\right)=0$.
Hint: One way to go is to use Morera's theorem. You can also use a theorem like Theorem 2.3.3. For the Morera'a approach, write

$$
\int_{\gamma} g(z) d z=\int_{\gamma} g(z) d z+\int_{\Gamma_{\epsilon}} g(z) d z-\int_{\Gamma_{\epsilon}} g(z) d z
$$

where $\Gamma_{\epsilon}=\left\{z:\left|z-z_{0}\right|=\epsilon\right\}$ traced clockwise. By Cauchy theorem, show that

$$
\int_{\gamma} g(z) d z+\int_{\Gamma_{\epsilon}} g(z) d z=\int_{\gamma \cup \Gamma_{\epsilon}} g(z) d z=0
$$

and then show that $\lim _{\epsilon \rightarrow 0} \int_{\Gamma_{\epsilon}} g(z) d z=0$.

[^0](4) Problem 24/page 97 - Prove that is correct. In fact, show that the radius of convergence is $r^{\prime}=\min (r, 1)$.
(5) Problem 27/page 97.

Hint: For the case when g has zeros - show first that the function $\frac{f(z)}{g(z)}$ is still well-defined and analytic at the zeros of g. For example, you can argue that it has removable singularities there.
(6) Problem 30/page 98, without the part about improving to a polynomial estimate.
(7) $37 /$ page 99 .

Hint: Here, you may want to use an extension of Exercise 2 (which needs to be proved), namely that for each integer $k, f_{j}^{(k)} \rightrightarrows f^{(k)}$.
(8) $42 /$ page 100 .

[^0]: ${ }^{1}$ This is actually always the case, don't need to assume it. That is, if f_{j} are holomorphic, then its limit f is holomorphic as well

