PROJECT IV - MATH 800 DUE APRIL 24, 2018

(1) Problem 6/page 175.

Hint: For $z \in D(0,1)$, take any smooth curve connecting 0 to z, say γ_z . Define

$$g(z) := \int_{\gamma_z} \frac{f'(\xi)}{f(\xi)} d\xi.$$

Show that g(z) is independent on γ_z , just on z. Then, compute g'(z), by computing $\lim_{\delta\to 0} \frac{g(z+\delta)-g(z)}{\delta}$ on appropriate $\gamma_{z+\delta}$.

(2) Suppose f is holomorphic in D(0,1) and continuous in $\overline{D(0,1)}$, so that |f(z)| < 1 for |z| = 1. Find the number of solutions inside D(0,1) of the equation $f(z) = z^n$ for any integer $n \ge 1$.

Hint: Rouche's theorem.

(3) 18/page 178

Let $f: D(0,2) \to C$ be holomorphic function. Let f(0) = 0 and 0 is a simple zero, i.e. $f'(0) \neq 0$. Also, $f(z) \neq 0$ for any $z \in D(0,1) \setminus \{0\}$. Let $\rho = \min\{|f(z)| : |z| = 1\} > 0$. Prove that

(4) For every $\omega \in D(0,\rho)$, there is an unique $z=z(\omega) \in D(0,1)$, so that $f(z(\omega))=\omega$.

Hint: Consider

$$k(\omega) = \frac{1}{2\pi i} \int_{|z|=1} \frac{f'(z)}{f(z) - \omega} dz, \quad \omega \in D(0, \rho).$$

integrated counterclockwise.

(5) Show that the map $\omega \to z(\omega)$ is holomorphic on $D(0, \rho)$.

Hint: Show that

$$z(\omega) = \frac{1}{2\pi i} \int_{|z|=1} \frac{zf'(z)}{f(z) - \omega} dz, \quad \omega \in D(0, \rho).$$

(6) Prove that

$$z'(\omega) = \frac{1}{2\pi i} \int_{|z|=1} \frac{1}{f(z) - \omega} dz.$$

Let f be holomorphic non-constant function in a neighborhood of the unit disc D(0,1). Assume that |f(z)| = 1, for |z| = 1.

(7) Prove that f(z) = 0 has a solution inside D(0, 1).

Hint: Use contradiction argument. Apply the maximum modulus principle to both f and 1/f.

(8) Prove that the image of f contains D(0,1).

Hint: Consider

$$k(\omega) = \frac{1}{2\pi i} \int_{|\xi|=1} \frac{f'(\xi)}{f(\xi) - \omega} d\xi, \ \omega \in D(0, 1).$$