DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF KANSAS
 MIDTERM MATH 800 - Spring 2012

Your Name: \qquad

1
(50) \qquad

2
(50) \qquad

3
(50) \qquad

4
(50) \qquad

Total (200) \qquad
(1) (50 points)

Let $f: D(0,1) \rightarrow \mathcal{C}$ be a holomorphic function. Prove that for each $r \in(0,1)$, we have

$$
2 f^{\prime}(0)=\frac{1}{2 \pi i} \int_{|z|=r} \frac{f(z)-f(-z)}{z^{2}} d z .
$$

(2) (50 points)

Let U be the strip $\{z:-1<\Im z<1\}$. Assuming that $f: U \rightarrow \mathcal{C}$ is a bounded holomorphic function, satisfying

$$
|f(z)| \leq A,
$$

prove that for all integers n, and for all real x,

$$
\left|f^{(n)}(x)\right| \leq A n!
$$

Give an example that shows that these estimates are sharp.
(3) (50 points)

Suppose that f is holomorphic on $D(0,1) \backslash\{0\}$.

- Let 0 be a pole for f. What is it then for f^{2} ?
- Let 0 be an essential singularity for f. What is it for f^{2} ?
(4) (50 points)

Let $f: D(0,1) \rightarrow \mathcal{C}$ be holomorphic. Assume that there is $0<r_{0}<1$, so that for every $0<r<r_{0}$,

$$
\int_{|z|=r} f(z) \bar{z}^{j} d z=0, j=1,2, \ldots
$$

Show that

- $f(z)=0$ on $D\left(0, r_{0}\right)$
- Use that $\left.f\right|_{D\left(0, r_{0}\right)}=0$ to conclude that $f(z)=0$ on $D(0,1)$.

Hint: Consider the set $E=\left\{z \in D(0,1): f^{(k)}(z)=0, k=0,1, \ldots\right\}$ and show that it is both open and close in $D(0,1)$.

