DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF KANSAS
 MIDTERM MATH 800 - Spring 2012

Your Name:
4 (120) \qquad

Total (400) \qquad
(1) (60 points)

Suppose Ω is an open set and $P_{0} \subset D\left(P_{0}, r\right) \subset \Omega$. Let $f: \Omega \backslash\left\{P_{0}\right\} \rightarrow \mathbf{C}$ is holomorphic, so that for soem constant C and for all $z \in D\left(P_{0}, r\right) \backslash\left\{P_{0}\right\}$,

$$
|f(z)| \leq \frac{C}{\sqrt{\left|z-P_{0}\right|}}
$$

Show that P_{0} is removable singularity for f.
(2) (100 points)

Is there an analytic function on D, so that $f: D \rightarrow D$ with $f(0)=\frac{1}{2}$ and $f^{\prime}(0)=\frac{3}{4}$. If so, find such an f. Is it unique?
Hint: Apply an appropriate Möbius transformation.
(3) (120 points)

Let $\Omega \subset \mathbf{C}$ be an open and connected set, so that $\bar{D}=\{z:|z| \leq 1\} \subset \Omega$. Let $f: \Omega \rightarrow \mathbf{C}$ be a non-constant holomorphic function. Show that if $|f(z)|=1$ whenever $|z|=1$, then $f(D) \supset D$.
Hint: The claim follows by establishing that for every $w_{0} \in D$, there is $z_{0} \in D$, so that $f\left(z_{0}\right)=w_{0}$. This should be done in a few steps:
(a) Show (by argument principle) that the equation $f(z)=w_{0}$ has a solution, if $f(z)=0$ has a solution. Justify the step.
(b) Show that $f(z)=0$ has a solution (otherwise, apply the maximum modulus principle for both $g(z)=\frac{1}{f(z)}$ and $f(z)$). In the contradiction argument, you must rule out the situation, where f is a constant function in D.
(4) (120 points)

Let $\left\{a_{j}\right\}_{j=1}^{\infty}, a_{j} \neq 0$ be a sequence of complex numbers, without any point of accumulation.

- Let $\alpha>\frac{1}{2}$ and assume that there is $C>0$, so that $\left|a_{j}\right| \geq C j^{\alpha}$. Show that the Weierstrass function $E(z)$

$$
E(z)=\prod_{j=1}^{\infty}\left(1-\frac{z}{a_{j}}\right) e^{\frac{z}{a_{j}}}
$$

has $\left\{a_{j}\right\}$ as zeroes. Justify your work.
Hint: Recall our approach for Exercise 10/page 275.

- Assuming only $\alpha>\frac{1}{3}$ and $\left|a_{j}\right| \geq C j^{\alpha}$, construct Weierstrass function $E(z)$ with zeroes exactly in the set $\left\{a_{j}\right\}$ in the form

$$
E(z)=\prod_{j=1}^{\infty}\left(1-\frac{z}{a_{j}}\right) e^{p_{j}(z)}
$$

where $\left\{p_{j}\right\}$ are polynomials of degree two. Justify your construction.
Hint: Take $p_{j}(z)=\frac{z}{a_{j}}+\beta_{j} z^{2}$, with appropriate choice of β_{j}.

