SOLUTION OF SOME PROBLEMS FROM PROJECT I

Problem 14/page 6

We use the method of characteristics for $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0$. Write it first as $\frac{\partial u}{\partial x}+\frac{y}{x} \frac{\partial u}{\partial y}=0$. We need to solve

$$
\frac{d y}{d x}=\frac{y}{x},
$$

which has a solution in the form $y=C x$. Thus, the general solution is in the form $u(x, y)=f(y / x)$.
Problem 27/page 25
a) Function is NOT piecewise continuous (since $\lim _{x \rightarrow 0+} \sin (1 / x)$ does not exist.
b), c) Functions are piecewise continuous, but NOT piecewise smooth, since their derivative do not have (one sided) limits as $x \rightarrow 0$.
d) Functon is piecewise smooth.

Problem 16/page 59
According to the Parseval's identity ((6), page 56), we have

$$
\int_{-\pi}^{\pi} f^{2}(x) d x=\pi\left(\sum_{n=1}^{\infty} e^{-2 n}\right)=\pi \frac{e^{-2}}{1-e^{-2}}=\frac{\pi}{e^{2}-1}
$$

Problem 15/page 67

Using the results of Example 1, page 63, we get

$$
\begin{aligned}
\cosh (a x) & =\frac{e^{a x}+e^{-a x}}{2}= \\
& =\frac{\sinh \pi a}{2 \pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}(a+i n) e^{i n x}-\frac{\sinh \pi a}{2 \pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}(-a+i n) e^{i n x}= \\
& =\frac{a \sinh \pi a}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}} e^{i n x}
\end{aligned}
$$

Applying the Parseval's identity

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cosh ^{2}(a x) d x=\frac{a^{2}(\sinh \pi a)^{2}}{\pi^{2}} \sum_{n=-\infty}^{\infty} \frac{1}{\left(a^{2}+n^{2}\right)^{2}}
$$

Computing the integral yields $\int_{-\pi}^{\pi} \cosh ^{2}(a x) d x=\pi+\sinh (2 \pi a) /(2 a)$, whence

$$
\sum_{n=-\infty}^{\infty} \frac{1}{\left(a^{2}+n^{2}\right)^{2}}=\frac{\pi}{2 a^{2}(\sinh \pi a)^{2}}\left[\pi+\frac{\sinh (2 \pi a)}{2 a}\right]
$$

For part b), we take the same approach, this time using

$$
\begin{aligned}
\sinh (a x) & =\frac{e^{a x}-e^{-a x}}{2}= \\
& =\frac{\sinh \pi a}{2 \pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}(a+i n) e^{i n x}+\frac{\sinh \pi a}{2 \pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}(-a+i n) e^{i n x}= \\
& =\frac{i \sinh \pi a}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n} n}{a^{2}+n^{2}} e^{i n x},
\end{aligned}
$$

whence

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sinh ^{2}(a x) d x=\frac{(\sinh \pi a)^{2}}{\pi^{2}} \sum_{n=-\infty}^{\infty} \frac{n^{2}}{\left(a^{2}+n^{2}\right)^{2}}
$$

Since $\int_{-\pi}^{\pi} \sinh ^{2}(a x) d x=\sinh (2 \pi a) /(2 a)-\pi$, we obtain

$$
\sum_{n=-\infty}^{\infty} \frac{n^{2}}{\left(a^{2}+n^{2}\right)^{2}}=\frac{\pi}{2(\sinh \pi a)^{2}}\left[\frac{\sinh (2 \pi a)}{2 a}-\pi\right]
$$

