SOLUTION OF SOME PROBLEMS FROM PROJECT III

Problem 6/page 185 (out of 4 points)
Using Exercise \# 4 as suggested, we have

$$
u(x, y)=\sum_{m=0}^{\infty} \cos \left(\frac{m \pi}{a} x\right)\left(A_{m} \cosh \left(\frac{m \pi}{a}(b-y)\right)+B_{m} \sinh \left(\frac{m \pi}{a}(b-y)\right)\right)
$$

This satisfies the PDe and the Neumann b.c. at $x=0, x=a$. Now, the condition $u_{y}(x, b)=0$ implies $B_{m}=0$. So,

$$
u(x, y)=\sum_{m=0}^{\infty} A_{m} \cos \left(\frac{m \pi}{a} x\right) \cosh \left(\frac{m \pi}{a}(b-y)\right)
$$

It remains to satisfy the last condition, namely $u(x, 0)+u_{y}(x, 0)=0$. We have

$$
0=u(x, 0)+u_{y}(x, 0)=\sum_{m=0}^{\infty} A_{m} \cos \left(\frac{m \pi}{a} x\right)\left[\cosh \left(\frac{m \pi}{a} b\right)-\frac{m \pi}{a} \sinh \left(\frac{m \pi}{a} b\right)\right]
$$

This means that for all integers m for which $\cosh \left(\frac{m \pi}{a} b\right)-\frac{m \pi}{a} \sinh \left(\frac{m \pi}{a} b\right) \neq 0$, we have that $A_{m}=0$. For the integers m, for which $\cosh \left(\frac{m \pi}{a} b\right)=\frac{m \pi}{a} \sinh \left(\frac{m \pi}{a} b\right)$, we have that an arbitrary A_{m} gives us a solution. So, the equation has the solution $u=0$, and in addition denoting the set of integers (which may be empty!)

$$
C_{a, b}=\left\{m: \cosh \left(\frac{m \pi}{a} b\right)=\frac{m \pi}{a} \sinh \left(\frac{m \pi}{a} b\right)\right\}
$$

we have other solutions,

$$
u=\sum_{m \in C_{a, b}} A_{m} \cos \left(\frac{m \pi}{a} x\right) \cosh \left(\frac{m \pi}{a}(b-y)\right) .
$$

where A_{m} are arbitrary.
Problem 10/page 206 (out of 3 points)
Using the method of separation of variables $u(r, \theta)=T(t) R(r)$, we obtain

$$
\frac{R^{\prime \prime}}{R}+\frac{1}{r} \frac{R^{\prime}}{R}=\text { const }=\frac{T^{\prime \prime}}{c^{2} T} .
$$

From the method of this section, see page 201, we obtain

$$
R_{n}(r)=J_{0}\left(\lambda_{n} r\right), \lambda_{n}=\frac{\alpha_{n}}{a}, \text { const }=-\lambda_{n}^{2} .
$$

Thus, the equation to $T: T^{\prime \prime}=-c^{2} \lambda_{n}^{2} T(t)$ resolves to $T_{n}(t)=$ conste $e^{-c^{2} \lambda_{n}^{2} t}$. Altogether,

$$
u=\sum_{n=1}^{\infty} A_{n} e^{-c^{2} \lambda_{n}^{2} t} J_{0}\left(\lambda_{n} r\right)
$$

The initial condition at $t=0$ yields

$$
f(r)=\sum_{n=1}^{\infty} A_{n} J_{0}\left(\lambda_{n} r\right)
$$

This is just a Bessel's expansion, so we obtain (see formula (10) on page 202),

$$
A_{n}=\frac{2}{a^{2} J_{1}^{2}\left(\aleph_{n}\right)} \int_{0}^{a} f(r) J_{0}\left(\lambda_{n} r\right) r d r
$$

Problem 12/page 216 (out of 3 points)
From the formulas on p. 211-(12), (13), (14), it is clear that $a_{m n}=0$ (integration against $\cos (m \theta), m=0,1,2, \ldots$) and also $b_{m n}=0, m \geq 2$ (integration against $\sin (m \theta), m=2, \ldots)$. Thus, the only non-zero coefficient is $b_{1 n}$. For it, we have

$$
b_{1 n}=\frac{2}{J_{2}^{2}\left(\alpha_{1 n}\right)} \int_{0}^{1}\left(1-r^{2}\right) r^{2} J_{1}\left(\alpha_{1 n} r\right) d r
$$

From formula (15) on page 211, we conclude

$$
b_{1 n}=\frac{4}{\alpha_{1 n}^{2} J_{2}^{2}\left(\alpha_{1 n}\right)} J_{3}\left(\alpha_{1 n}\right) .
$$

