SOLUTION OF SOME PROBLEMS FROM PROJECT II

Problem 12/page 145 (out of 3 points)
We apply the formula (9), p. 140 with $u_{1}(x)=100$. Then, it remains to solve

$$
\left\lvert\, \begin{aligned}
& u_{t}=u_{x x}, 0<x<1 \\
& u(0, t)=u(1, t)=0 \\
& u(x, 0)=50 x(1-x)-100
\end{aligned}\right.
$$

So, the solution to this PDE is given by

$$
u_{2}(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-(n \pi)^{2} t} \sin (n \pi x)
$$

where

$$
b_{n}=2 \int_{0}^{1}[50 x(1-x)-100] \sin (n \pi x) d x=100 \frac{\left(n^{2} \pi^{2}-1\right)\left((-1)^{n}-1\right)}{n^{3} \pi^{3}}
$$

So,

$$
u(t, x)=100-200 \sum_{k=0}^{\infty} \frac{\left((2 k+1)^{2} \pi^{2}-1\right)}{(2 k+1)^{3} \pi^{3}} e^{-((2 k+1) \pi)^{2} t} \sin ((2 k+1) \pi x)
$$

Problem 15/page 153 (out of 3 points)
The separation of variables leads to

$$
X^{\prime \prime}(x)+\mu^{2} X(x)=0, X^{\prime}(0)=0, X^{\prime}(L)=-\kappa X(L) .
$$

Clearly, $X(x)=C_{1} \cos (\mu x)+C_{2} \sin (\mu x)$. The condition $X^{\prime}(0)=0$ then implies that $C_{2}=0$, so

$$
X(x)=C \cos (\mu x)
$$

Imposing the other boundary condition leads to the relation

$$
\cot (\mu L)=\frac{\mu}{\kappa}
$$

This has a sequence of solutions $\mu_{n}, n=1, \ldots, X_{n}(x)=\cos \left(\mu_{n} x\right)$. Consequently, $T_{n}(t)=c_{n} e^{-\mu_{n}^{2} t}$, whence

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\mu_{n}^{2} t} \cos \left(\mu_{n} x\right)
$$

Setting this at $t=0$ yields

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \cos \left(\mu_{n} x\right)
$$

Taking into account the orthogonality of $\left\{\cos \left(\mu_{n} x\right)\right\}_{n}$, we obtain, just as in (11) on p. 149,

$$
c_{n}=\frac{1}{\int_{0}^{L} \cos \left(\mu_{n} x\right)^{2} d x} \int_{0}^{L} f(x) \cos \left(\mu_{n} x\right) d x
$$

Problem 12/page 169 (out of 4 points)
We setup the separation of variables in the usual way $u=X(x) Y(y) Z(z)$ and plug in the equation. Dividing by $X Y Z$, we obtain

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+\frac{Z^{\prime \prime}}{Z}=0
$$

By boundary conditions $X(0)=X(a)=Y(0)=Y(b)=Z(0)=0$. Since all three functions depend upon a different variable, we have that

$$
\frac{X^{\prime \prime}}{X}=-\mu^{2}, \frac{Y^{\prime \prime}}{Y}=-\nu^{2}
$$

whence

$$
\frac{Z^{\prime \prime}}{Z}=\left(\mu^{2}+\nu^{2}\right)
$$

The X and Y equations has been solved already, we obtain

$$
\begin{aligned}
& \mu=\mu_{m}=\frac{m \pi}{a}, X_{m}=\sin \left(\frac{m \pi}{a} x\right) \\
& \nu=\nu_{n}=\frac{n \pi}{b}, Y_{n}=\sin \left(\frac{n \pi}{b} y\right)
\end{aligned}
$$

And finally

$$
\lambda_{m n}=\sqrt{\mu_{m}^{2}+\nu_{n}^{2}}, \quad Z(z)=A \cosh \left(\lambda_{m n} z\right)+B \sinh \left(\lambda_{m n} z\right)
$$

Since $Z(0)=0$, it follows that $A=0$. As a consequence

$$
u(x, y, z)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{m n} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \sinh \left(\lambda_{m n} z\right)
$$

Setting $z=c$ leads to the relation

$$
f(x, y)=u(x, y, c)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{m n} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \sinh \left(\lambda_{m n} c\right)
$$

By double Fourier series expansions,

$$
A_{m n}=\frac{4}{a b \sinh \left(\lambda_{m n} c\right)} \int_{0}^{a} \int_{0}^{b} f(x, y) \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) d x d y
$$

