SOLUTION OF SOME PROBLEMS FROM PROJECT I

Problem 12/page 36

We setup the integrals for the Fourier coefficients as on page 27 (note the a coefficients are zero, since the function is odd) and compute through a computer algebra system (I used Mathematica)

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\pi^{2} x-x^{3}\right) d x=0 \\
& a_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\pi^{2} x-x^{3}\right) \cos (n x) d x=0 \\
& b_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\pi^{2} x-x^{3}\right) \sin (n x) d x=-\frac{12}{n^{3}} \cos (n \pi)=(-1)^{n+1} \frac{12}{n^{3}}
\end{aligned}
$$

The Fourier series is then,

$$
12 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}} \sin (n x) .
$$

Problem 17/page 47
Using the formulas in Exercise 4, for $p=\pi$ and at $x=0$, and noting that the function is continuous at zero, we obtain the following

$$
0=\frac{\pi^{2}}{3}-4\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}} \ldots\right]
$$

Rearranging terms yields

$$
\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}} \ldots=\frac{\pi^{2}}{12} .
$$

The second part is just playing with the sums

$$
A=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots, \quad B=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots
$$

From part a), we have that $\frac{\pi^{2}}{12}=A-\frac{B}{4}$, while

$$
B-A=\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\ldots=\frac{1}{4} B .
$$

From here $B=\frac{4 A}{3}$. Plugging this into the other relation yields

$$
\frac{\pi^{2}}{12}=A-\frac{B}{4}=\frac{2 A}{3},
$$

or $A=\frac{\pi^{2}}{8}$ as required.
Problem 15 a/page 67

We start with the expansion of $e^{a x}$, provided in Example 1, page 63.

$$
e^{a x}=\frac{\sinh (\pi a)}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}(a+i n) e^{i n x},-\pi<x<\pi .
$$

Consequently, write

$$
\frac{e^{a x}}{\sinh (\pi a)}=\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}(a+i n) e^{i n x},-\pi<x<\pi
$$

Take a derivative in a in the last identity

$$
\partial_{a}\left[\frac{e^{a x}}{\sinh (\pi a)}\right]=\frac{1}{\pi} \sum_{n=-\infty}^{\infty}(-1)^{n} \frac{\left(n^{2}-a^{2}\right)-2 a i n}{\left(a^{2}+n^{2}\right)^{2}} e^{i n x}
$$

Applying the Parseval's identity - Theorem 2, page 65,

$$
\frac{1}{\pi^{2}} \sum_{n=-\infty}^{\infty} \frac{\left|\left(n^{2}-a^{2}\right)-2 a i n\right|^{2}}{\left(a^{2}+n^{2}\right)^{4}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\partial_{a}\left[\frac{e^{a x}}{\sinh (\pi a)}\right]\right|^{2} d x .
$$

Thus, using computer algebra system to compute the integral on the right,

$$
\sum_{n=-\infty}^{\infty} \frac{1}{\left(a^{2}+n^{2}\right)^{2}}=\frac{\pi}{2 a^{3}}\left[\operatorname{coth}[a \pi]+a \pi c s c h^{2}[a \pi]\right]
$$

Problem 12/page 124

By separation of variables $u=X(x) T(t)$, we obtain

$$
T^{\prime \prime} X+2 k X T^{\prime}=c^{2} X^{\prime \prime} T
$$

which results in

$$
\frac{T^{\prime \prime}}{T}+2 k \frac{T^{\prime}}{T}=c^{2} \frac{X^{\prime \prime}}{X}
$$

These are functions of t on the left and of x on the right, so they are constants. So $\frac{X^{\prime \prime}}{X}=\mu, X(0)=X(L)=0$. It follows that $X_{n}(x)=\sin (n \pi x / L), \mu_{n}=-(n \pi / L)^{2}$, $n=1,2, \ldots$. The equation for T is

$$
T^{\prime \prime}+2 k T^{\prime}+(n \pi c / L)^{2} T=0
$$

By solving the characteristic equation, we obtain $r=-k \pm \sqrt{k^{2}-(n \pi c / L)^{2}}$. If $k^{2}>(n \pi c / L)^{2}$, we have

$$
T_{n}(t)=e^{-k t}\left(a_{n} \cosh \left(\lambda_{n} t\right)+b_{n} \sinh \left(\lambda_{n} t\right)\right), \lambda_{n}=\sqrt{k^{2}-(n \pi c / L)^{2}}
$$

If $k^{2}<(n \pi c / L)^{2}$, we have

$$
T_{n}(t)=e^{-k t}\left(a_{n} \cos \left(\lambda_{n} t\right)+b_{n} \sin \left(\lambda_{n} t\right)\right), \lambda_{n}=\sqrt{(n \pi c / L)^{2}-k^{2}}
$$

Thus,

$$
\begin{aligned}
u(x, t) & =e^{-k t} \sum_{n<\frac{k L}{\pi c}} \sin (n \pi x / L)\left(a_{n} \cosh \left(\lambda_{n} t\right)+b_{n} \sinh \left(\lambda_{n} t\right)\right)+ \\
& +e^{-k t} \sum_{n>\frac{k L}{\pi c}} \sin (n \pi x / L)\left(a_{n} \cos \left(\lambda_{n} t\right)+b_{n} \sin \left(\lambda_{n} t\right)\right)
\end{aligned}
$$

Taking $t=0$ and the specifics of the \sin expansions, $f(x)=\sum_{n} a_{n} \sin (n \pi x / L)$, so

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x
$$

whereas

$$
g(x)=u_{t}(x, 0)=\sum_{n}\left(\lambda_{n} b_{n}-k a_{n}\right) \sin (n \pi x / L)
$$

whence $\lambda_{n} b_{n}-k a_{n}=\frac{2}{L} \int_{0}^{L} g(x) \sin (n \pi x / L) d x$.

