
SOLUTION OF SOME PROBLEMS FROM PROJECT I

Problem 12/page 36
We setup the integrals for the Fourier coefficients as on page 27 (note the a coefficients
are zero, since the function is odd) and compute through a computer algebra system
(I used Mathematica)

a0 =
1

2π

∫ π

−π
(π2x− x3)dx = 0

an =
1

2π

∫ π

−π
(π2x− x3) cos(nx)dx = 0

bn =
1

2π

∫ π

−π
(π2x− x3) sin(nx)dx = −12

n3
cos(nπ) = (−1)n+112

n3

The Fourier series is then,

12
∞∑
n=1

(−1)n+1

n3
sin(nx).

Problem 17/page 47
Using the formulas in Exercise 4, for p = π and at x = 0, and noting that the function
is continuous at zero, we obtain the following

0 =
π2

3
− 4

[
1

12
− 1

22
+

1

32
. . .

]
Rearranging terms yields

1

12
− 1

22
+

1

32
− 1

42
. . . =

π2

12
.

The second part is just playing with the sums

A = 1 +
1

32
+

1

52
+ . . . , B = 1 +

1

22
+

1

32
+

1

42
+ . . .

From part a), we have that π2

12
= A− B

4
, while

B − A =
1

22
+

1

42
+

1

62
+ . . . =

1

4
B.

From here B = 4A
3

. Plugging this into the other relation yields

π2

12
= A− B

4
=

2A

3
,

or A = π2

8
as required.

Problem 15 a/page 67
1
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We start with the expansion of eax , provided in Example 1, page 63.

eax =
sinh(πa)

π

∞∑
n=−∞

(−1)n

a2 + n2
(a+ in)einx,−π < x < π.

Consequently, write

eax

sinh(πa)
=

1

π

∞∑
n=−∞

(−1)n

a2 + n2
(a+ in)einx,−π < x < π.

Take a derivative in a in the last identity

∂a

[
eax

sinh(πa)

]
=

1

π

∞∑
n=−∞

(−1)n
(n2 − a2)− 2ain

(a2 + n2)2
einx

Applying the Parseval’s identity - Theorem 2, page 65,

1

π2

∞∑
n=−∞

|(n2 − a2)− 2ain|2

(a2 + n2)4
=

1

2π

∫ π

−π

∣∣∣∣∂a [ eax

sinh(πa)

]∣∣∣∣2 dx.
Thus, using computer algebra system to compute the integral on the right,

∞∑
n=−∞

1

(a2 + n2)2
=

π

2a3
[
coth[aπ] + aπcsch2[aπ]

]
.

Problem 12/page 124
By separation of variables u = X(x)T (t), we obtain

T ′′X + 2kXT ′ = c2X ′′T.

which results in
T ′′

T
+ 2k

T ′

T
= c2

X ′′

X
.

These are functions of t on the left and of x on the right, so they are constants. So
X′′

X
= µ,X(0) = X(L) = 0. It follows that Xn(x) = sin(nπx/L), µn = −(nπ/L)2,

n = 1, 2, . . .. The equation for T is

T ′′ + 2kT ′ + (nπc/L)2T = 0

By solving the characteristic equation, we obtain r = −k ±
√
k2 − (nπc/L)2. If

k2 > (nπc/L)2, we have

Tn(t) = e−kt(an cosh(λnt) + bn sinh(λnt)), λn =
√
k2 − (nπc/L)2

If k2 < (nπc/L)2, we have

Tn(t) = e−kt(an cos(λnt) + bn sin(λnt)), λn =
√

(nπc/L)2 − k2
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Thus,

u(x, t) = e−kt
∑
n< kL

πc

sin(nπx/L)(an cosh(λnt) + bn sinh(λnt)) +

+ e−kt
∑
n> kL

πc

sin(nπx/L)(an cos(λnt) + bn sin(λnt)).

Taking t = 0 and the specifics of the sin expansions, f(x) =
∑

n an sin(nπx/L), so

an =
2

L

∫ L

0

f(x) sin(nπx/L)dx.

whereas
g(x) = ut(x, 0) =

∑
n

(λnbn − kan) sin(nπx/L),

whence λnbn − kan = 2
L

∫ L
0
g(x) sin(nπx/L)dx.


