## DEPARTMENT OF MATHEMATICS UNIVERSITY OF KANSAS MATH 220 - SPRING 2005-EXAM 3

## Your Name:

$\qquad$
On this exam, you may use a calculator and a list of formulas.
It is not sufficient to just write down the answers. You must explain how you arrived at your answers and how you know they are correct.

| 1 | $(30)$ |
| :--- | :--- |
| 2 | $(20)$ |
| 3 | $(20)$ |
| 4 | $(25)$ |
| 5 | $(30)$ |
| 6 | $(25)$ |
| Total | $(150)$ |

(1) (30 points) Find the solution of the initial value problem using the Laplace transform.

$$
\left\lvert\, \begin{aligned}
& y^{\prime \prime}-y^{\prime}-6 y=0 \\
& y(0)=1, y^{\prime}(0)=-1
\end{aligned}\right.
$$

(2) ( 20 points) For the matrix

$$
A=\left(\begin{array}{ccc}
\sin x & x^{3}-2 x+1 & 1 \\
x & 3 x^{2}-1 & x^{4}-1 \\
\sin x+1 & -5 \cos x & 3 x-4
\end{array}\right)
$$

compute $A^{\prime}(x)$ and $\int A(x) d x$.
(3) (20 points) Find the inverse Laplace transform of the function

$$
F(s)=\frac{s e^{-3 s}}{(s+1)\left(s^{2}+4\right)}
$$

(4) ( 25 points) Find the solution of the initial value problem using the Laplace transform.

$$
\left\lvert\, \begin{aligned}
& y^{\prime \prime}-y^{\prime}-2 y=e^{t} \\
& y(0)=1, y^{\prime}(0)=1
\end{aligned}\right.
$$

(5) (30 points) Find the solution of the initial value problem and describe its behavior for increasing $t$. Use Laplace transform.

$$
\begin{aligned}
& y^{\prime \prime}+4 y=u_{\pi}(t) \\
& y(0)=0, y^{\prime}(0)=1
\end{aligned}
$$

(6) (25 points) Find the eigenvalues and the eigenvectors of the matrix

$$
\left|\begin{array}{cc}
1 & 1 \\
5 & -3
\end{array}\right|
$$

(7) (30 points), BONUS PROBLEM Solve the initial value problem using Laplace transform

$$
y^{(4)}+5 y^{\prime \prime}+4 y=1-u_{\pi}(t), y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=0, y^{\prime \prime \prime}(0)=0 .
$$

