
ar
X

iv
:1

80
6.

10
51

6v
1 

 [
m

at
h.

A
P]

  2
7 

Ju
n 

20
18

ON THE SHARP TIME DECAY RATES FOR THE 2D GENERALIZED QUASI-GEOSTROPHIC

EQUATION AND THE BOUSSINESQ SYSTEM

ATANAS G. STEFANOV AND FAZEL HADADIFARD

ABSTRACT. We compute the sharp time decay rates of the solutions of the IVP for quasi-geostrophic

equation and the Boussinesq model, subject to fractional dissipation. Moreover, we explicitly

identify the asymptotic profiles, the kernel of the α stable processes, which are analogues of the

Oseen vortices.

1. INTRODUCTION

The initial value problem for the Navier-Stokes equation

(1.1)

{
ut +u ·∇u −∆u =∇p, x ∈ Rn , t > 0

u(0, x) := u0(x),∇·u = 0

where u is the fluid velocity and p is the pressure, is ubiquitous and much studied model in

the modern PDE theory. Basic issues like global well-posedness remain elusively unresolved in

spatial dimensions n ≥ 3. In the case of two spatial dimensions though, the problem is globally

well-posed. This is mostly due to the following representation, which eliminates the pressure

term and leads to equivalent vorticity formulation,

(1.2)

{
ωt +u ·∇ω−∆ω= 0, x ∈ R2, t > 0

ω(0, x) :=ω0(x),

where the vorticity ω, a scalar quantity, is given by ω= ∂1u2−∂2u1. We denote ∇⊥ =

(
−∂2

∂1

)
for

future reference, so that ω=∇⊥
~u. Many generalizations of this model have been considered, in

particular to respond to modeling situations where the actual physical dissipation is different

than the one provided by the Laplacian, in particular in large scale atmospheric models and

large scale ocean modeling, see [1, 6, 14]. In particular, we consider the following “umbrella”

model {
∂t z +u ·∇z +|∇|αz = 0, x ∈R

2, t > 0,

u = (|∇|⊥)−βz,∇·u = 0.
(1.3)

where α> 1 and β≥ 0, (|∇|⊥)−β =∇⊥m−β−1(|∇|) = m−β(ξ), where ma is a symbol of order a, see

Section 2.1 for precise definition1. These type of equations frequently arise in fluid dynamics

and as such, they have been widely studied, especially so in the last twenty years. We refer the

reader to the works [1, 2, 4, 6, 7, 11, 14, 16, 23, 24] and references therein.
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A few examples, that we would like to emphasize as model cases, are as follows. The 2D

Fractional Navier-Stokes equation arises, if we take z =ω and β= 1,

(1.4) ωt +u ·∇ω+|∇|
αω= 0.

expl If we let z = θ be the temperature of a flow, α > 1 and β = 0 the resulting equation is the

so-called active scalar equation,

(1.5) θt +u ·∇θ+|∇|
αθ = 0,

where u1 = −R2θ,u2 = R1θ, and R j , j = 1,2 are the Riesz transforms, given by the symbols

m j (ξ) = i
ξ j

|ξ| .

The Boussinesq system, with general dissipations, reads




∂t u +u ·∇u +|∇|σ1 u =−∇p +θ~e2, x ∈R
2, t > 0,

∂tθ+u ·∇θ+|∇|σ2θ = 0, x ∈R
2, t > 0,

∇·u = 0.

(1.6)

where u is the velocity of the fluid, θ is its temperature, p is the pressure and σ1,σ2 > 0 are the

dissipation rates for the velocity and the temperature respectively, see [1, 3, 6, 13, 14, 23, 24] for

background and various well-posedness results.

We consider the equivalent vorticity formulation, with the usual scalar vorticity variable is

given by ω = ∂1u2 − ∂2u1. For the purposes of this work, we will only consider the diagonal

case σ1 =σ2 =α. That is in vorticity formulation, the system consists of the following coupled

equations




∂tω+u ·∇ω+|∇|αω= ∂1θ, x ∈R
2, t > 0,

∂tθ+u ·∇θ+|∇|αθ = 0, x ∈R
2, t > 0,

u = (∇⊥)−1ω, ∇·u = 0.

(1.7)

1.1. Previous results. As we have mentioned earlier, a lot of work has been done on the ques-

tion of well-posedness, regularity of the solutions to these systems. We do not even attempt to

overview the results, as this is only tangentially relevant for the current work, but the previously

mentioned references contain lots of information about these issues. As the purpose of this pa-

per is to study the long time behavior of the said models, we discuss some recent works on the

topic. Most of the research has been done in the important (and classical) Navier-Stokes case in

two and three dimensional cases. As the global regularity for this model remains a challenging

open problem in 3D, some authors restricted themselves to weak solutions2 or they considered

eventual3 behavior of strong solutions. In this regard, we would like to reference the following

works, [4, 9, 10, 11, 15, 17, 18, 19, 20, 21].

In [18], the author has exhibited lower time-decay bounds for the solutions, which match the

upper bounds and are therefore sharp. The approach in [9, 10], for the same question, uses

the method of the so-called scaled variables. This was pioneered in [11, 4], although the idea

really took of after the work [9]. It showed not only the optimal decay rates for the Navier-

Stokes equation ( this was actually previously established in [3]), but it provided an explicit

asymptotic expansion of the solution, which explains the specific conditions on the initial data

in [3], under which there are better decay rates. Recently, Goh and Wayne, [12] have considered

2which may be non-unique
3that is, past eventual singularity formation
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the Boussinesq model, with rapid rotation in 3D. They have shown, using the method of scaled

variables, convergence to the Oseen vortex and associated leading order asymptotics.

In this paper, we follow this idea, to provide an explicit asymptotic expansion for the two

models under consideration - the generalized quasi-geostrophic equation (1.3) and the Boussi-

nesq system (in vorticity formulation), (1.7). Note that we work exclusively in two spatial di-

mensions. There are several reasons for this - 2D is the natural playground for (1.3), while the

IVP for the Boussinesq system, the three (and higher) dimensional case, faces the same diffi-

culties as the Navier-Stokes problem, namely absence of a global regularity theory. Moreover,

we explore relatively low levels of dissipation, which in some sense, brings the global regularity

theory to its limits, and we are still able to analyze the asymptotic behavior. Another interesting

feature that we deal with is the fractional dissipation. These have been studied in the recent

literature, but there are certain technical (and conceptual!) difficulties associated with them,

that we deal with by applying advanced Fourier analysis methods.

1.2. The scaled variables. We now introduce the scaled variables, for the models under consid-

eration. Basically, the method consists of introducing a new exponential time variable τ : eτ ∼ t

and the corresponding variables in x are rescaled to accommodate this scaling, by keeping the

linear part of the equation autonomous. In this way, an algebraic decay in t will manifest it-

self as an exponential decay in τ. As is well-known, algebraic decays in time (especially non-

integrable ones) are notoriously hard to propagate along non-linear evolution equations, while

any (however small) exponential decay, due to its integrability, is more amenable to this type of

analysis. Here are the details.

1.2.1. The scaled variables: the SQG equation. Consider the equation (1.3), and use the scaled

variables to rewrite the variables in terms of

(1.8) ξ=
x

(1+ t )
1
α

, τ= ln(1+ t ).

We define new functions Z (ξ,τ) and U (ξ,τ) correspond to z(x, t ) and u(x, t ) as follows:

z(x, t ) =
1

(1+ t )1+
β−1
α

Z

(
x

(1+ t )
1
α

, ln(1+ t )

)
,(1.9)

u(x, t ) =
1

(1+ t )1− 1
α

U

(
x

(1+ t )
1
α

, ln(1+ t )

)
.(1.10)

The choices of the parameters is clearly dictated by the stricture of the corresponding equation

- the goal is to ensure an autonomous PDE in the new variables. Indeed, a straightforward

calculation shows

zt =
Zτ

(1+ t )2+
β−1
α

−
1

α

1

(1+ t )2+
β−1
α

x

(1+ t )
1
α

·∇ξZ −
1+

β−1

α

(1+ t )2+
β−1
α

Z ,

|∇|
αz =

1

(1+ t )2+
β−1
α

|∇|
αZ ,

u ·∇z =
1

(1+ t )2+
β−1
α

U ·∇ξZ .

Hence, Z (ξ,τ) satisfies the equation

(1.11) Zτ =L Z −U ·∇ξZ
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where

(1.12) L Z =−|∇|
αZ +

1

α
ξ ·∇ξZ +

(
1+

β−1

α

)
Z .

Note that the relation u = (|∇|⊥)−βz transforms into U = (|∇|⊥)−βZ . In addition, the property

∇·u = 0 is retained, i.e. ∇·U = 0.

Next, we introduce the scaled variables for the Boussinesq system.

1.2.2. The scaled variables: the Boussinesq system. Similar to the SQG case, we use the scaled

variables

ξ=
x

(1+ t )
1
α

, τ= ln(1+ t ).

We define new functions W (ξ,τ), U (ξ,τ) and Θ(ξ,τ), corresponding to ω(x, t ), u(x, t ) and θ(x, t )

as follows

ω(x, t ) =
1

(1+ t )
W

(
x

(1+ t )
1
α

, ln(1+ t )

)

u(x, t ) =
1

(1+ t )1− 1
α

U

(
x

(1+ t )
1
α

, ln(1+ t )

)

θ(x, t ) =
1

(1+ t )2− 1
α

Θ

(
x

(1+ t )
1
α

, ln(1+ t )

)

Then, we calculate

ωt =
Wτ

(1+ t )2
−

1

α

1

(1+ t )2

x

(1+ t )
1
α

·∇ξW −
1

(1+ t )2
W ,

|∇|
αω =

1

(1+ t )2
· |∇|

αW , u ·∇ω=
1

(1+ t )2
U ·∇W , ∂1θ =

1

(1+ t )2
∂1Θ.

For the θ equation similar computation shows that

θt =
Θτ

(1+ t )3− 1
α

−
1

α

1

(1+ t )3− 1
α

x

(1+ t )
1
α

·∇ξΘ−
2− 1

α

(1+ t )3− 1
α

Θ,

|∇|
αθ =

1

(1+ t )3− 1
α

|∇|
α
Θ, u ·∇θ =

1

(1+ t )3− 1
α

U ·∇Θ.

Therefore W (ξ,τ) and Θ(ξ,τ) satisfy (with the L defined above in (1.12), but with β= 1)
{

Wτ =L W −U ·∇ξW +∂1Θ

Θτ = (L +1− 1
α

)Θ− (U ·∇ξΘ)
(1.13)

Clearly, the relations ∇·u = 0 and u = (|∇|⊥)−1ω continue to hold for the capital letter variables

as well, that is ∇ ·U = 0 and U = (|∇|⊥)−1W . In addition to the above equations we can define

p(x, t ) = 1

(1+t)2− 2
α

P

(
x

(1+t)
1
α

, log(1+ t )

)
and find the following equation for U (ξ,τ),

(1.14) Uτ = (L −
1

α
)U − (U ·∇ξU )−∇P +Θ ·e2
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1.3. Main results. The main goal of this work is to establish the sharp time decay rates of (var-

ious norms of) the solutions to (1.3) and (1.7). Our results actually provide explicit asymptotic

profiles, of which the precise asymptotic rates are a mere corollary.

Since it is clear that the equation for θ in (1.7) is basically4 (1.3), it is essential that we start with

(1.3). This is the content of our first result, but in order to state it, we shall need to introduce a

function G : Ĝ(p) = e−|p|α , see Section 2.3 for proper definitions and properties. This is a variant

of the function e−
|x|2

2 , or the Oseen vortex in the case α = 2. For the statement below, please

refer to (2.4) for the definition of the weighted spaces L2(2).

Theorem 1. (Global decay estimates for SQG) Let 1 <α< 2, and α+β≤ 3. Then, assuming that

the initial data z0 is in L2(2)∩ L∞, the Cauchy problem (1.3) has a unique, global solution in

L2(2)∩L∞. Moreover, for all ǫ> 0, there is a constant C =Cα,β,ǫ and for all p ∈ [1,2] and t ≥ 0,

(1.15) ‖z(t , ·)−

∫
R2 z0(x)d x

(1+ t )
2
α

G

(
·

(1+ t )
1
α

)
‖Lp ≤

Cα,β,ǫ‖z0‖L2(2)∩L∞

(1+ t )
3
α−

2
αp −ǫ

.

Moreover, if β> 1, we have that (1.15) holds for the full range of indices 1 ≤ p <∞.

For generic initial data, that is
∫

R2 z0(x)d x 6= 0, we have

‖z(t , ·)‖Lp ∼ (1+ t )
−

2(p−1)
αp , 1 ≤ p ≤ 2.

which extends to all 1 ≤ p <∞, provided β> 1.

Remarks:

• Our results extend those in [8], as they provide an upper bound for the time decay, for

weak solutions of the SQG.

• In [9, 10], the authors go one step further in deriving explicitly the next order asymptotic

profiles. The analysis required for this step is performed in higher order weighted L2

space. This cannot be done in this framework, since the function G does not belong to

the next order weighted space, namely L2(3), see Proposition 3. This is in sharp contrast

with the case α= 2, considered in [9, 10], where the function is in Schwartz class.

• Related to the previous point, we need to address a problem, where the function G and

the heat kernel of the semigroup eτL have limited decay at infinity. Thus, any attempt

to use the dynamical system approach in [9] to construct stable manifolds faces serious

obstacles. We take a different approach to the problem in that we use a priori estimates

and estimates on the evolution operator to establish the asymptotic decomposition.

Our next result concerns (1.7).

Theorem 2. (Global decay estimates for Boussinesq) Let α ∈ (1, 3
2

). Consider the Cauchy problem

for (1.7), with initial data w0,θ0 ∈ Y := L2(2)∩L∞∩ H1(R2). Then, the Cauchy problem (1.7) is

globally well-posed in Y - that is for every t > 0, the solution (w(t ),θ(t )) ∈ Y ×Y .

4albeit the relation of u with θ is not a direct one, but through the vorticity ω
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Moreover, for every δ> 0, there exists C =C (α,δ,‖w0‖Y ,‖θ0‖Y ), so that for all p ∈ [1,2] and for

all t > 0,

‖w(t , ·)−
γ2(0)

(1+ t )
3
α−1

∂1G

(
·

(1+ t )
1
α

)
−

γ1(0)

(1+ t )
2
α

G

(
·

(1+ t )
1
α

)
‖Lp ≤

Cα,δ‖(w0,θ0)‖Y

(1+ t )
6
α−3− 2

αp −δ
,(1.16)

‖θ(t , ·)−
γ2(0)

(1+ t )
2
α

G

(
·

(1+ t )
1
α

)
‖Lp ≤

Cα,δ‖(w0,θ0)‖Y

(1+ t )
5
α−2− 2

αp −δ
,(1.17)

where γ1(0) =
∫

R2 w0(x)d x,γ2(0) =
∫

R2 θ0(x)d x. In particular, if γ2(0) 6= 0, we have

‖w(t , ·)‖Lp ∼
1

(1+ t )
3
α−1− 2

αp

,‖θ(t , ·)‖Lp ∼
1

(1+ t )
2
α−

2
αp

,

Remarks:

• As in Theorem 1, the results can be extended to provide asymptotic expansions for w,θ

in the norms Lp , p ∈ (2,∞), with the exact same statement.

• Note that the decay rate (1+ t )1− 3
α in the expression for w is dominant over (1+ t )−

2
α .

• For α ∈ ( 4
3

, 3
2

), the correction term
γ1(0)

(1+t)
2
α

G

(
·

(1+t)
1
α

)
is faster decaying than the error term

and we can state the result as follows

‖w(t , ·)−
γ2(0)

(1+ t )
3
α−1

∂1G

(
·

(1+ t )
1
α

)
‖Lp ≤

Cα,δ‖(w0,θ0)‖Y

(1+ t )
6
α−3− 2

αp −δ
,

The paper is organized as follows. In Section 2.1, we introduce some basic Sobolev spaces,

weighted L2 spaces and some relevant estimates that will be useful in the sequel. In Section 3.1,

we study the operator L - we establish the basic structure of its spectrum, as well as an explicit

form of the semigroup eτL . The semigroup is shown to act boundedly on certain weighted L2

spaces. This is helpful for the study of the non-linear evolutions problem, but it also helps us

identify the spectrum, through the Hille-Yosida theorem, see Section 3.4. In Section 4, we de-

velop the local and global well-posedness theory for the generalized quasi-geostrophic equa-

tion, both in the original variables and then in the scaled variables. This is done via standard

energy estimates methods. Even at this level, the optimal decay estimates start to emerge, in

the scaled variables context5. Our asymptotic results for the quasi-geostrophic model are in

Section 6. In it, we use the a priori information from Section 4, together with new estimates

for the Duhamel’s operator to derive the precise asymptotic profiles for the solutions. For the

Boussinesq system, we provide the necessary local and global well-posedness theory in Section

5. Some of these results are basic and could have been recovered from earlier publications. Oth-

ers provide new a piori estimates for the scaled variables system, which are used in Section 7.

In Section 7, we provide the proof of our main result about the precise asymptotic profiles for

the Boussinesq evolution.

Acknowledgement: The authors wish to thank Ryan Goh and Jiahong Wu for stimulating dis-

cussions regarding these topics.

5But at this point, we cannot yet conclude the optimality of these estimates, as we are missing an estimate from

below.
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2. PRELIMINARIES

2.1. Fourier Transform, function spaces and mulitpliers. The Fourier transform and its in-

verse are taken in the form

f̂ (p) =

∫

Rn
f (x)e−i x·p d x, f (x) = (2π)−n

∫

Rn
f̂ (p)e i x·p d p

Consequently, since �−∆ f (p) = |p|2 f̂ (p), we define the operators |∇|a := (−∆)a/2, a > 0, via its

action on the Fourier side �|∇|a f (p) = |p|a f̂ (p). More generally, the operators f (|∇|), for reason-

able functions f , are acting as multipliers by f (|p|). We also make use of the following notation

- we say that m is a symbol of order a, a ∈ R, if it is a smooth function on Rn \{0}, satisfying for all

multi-indices α ∈ Nn ,

|∂αm(ξ)| ≤Cα|ξ|
a−|α|.

It is actually enough to assume this inequality for a finite set of indices, say |α| ≤ n. The pro-

totype will be something of the form m(ξ) = |ξ|a , but note that a will be often negative in our

applications. We schematically denote a symbol of order a by ma .

The Lp spaces are defined by the norm ‖ f ‖Lp =

(∫
| f (x)|p d x

) 1
p

, while the weak Lp spaces are

Lp,∞
=

{
f : ‖ f ‖Lp,∞ = sup

λ>0

{
λ |{x : | f (x)| >λ}|

1
p

}
<∞

}
.

In this context, recall the Hausdorff–Young inequality which reads as follows: For p, q,r ∈ (1,∞)

and 1+ 1
p
= 1

q
+ 1

r

‖ f ∗ g‖Lp ≤Cp,q,r ‖ f ‖Lq,∞‖g‖Lr .

For an integer n and p ∈ (1,∞), the Sobolev spaces are the closure of the Schwartz functions

in the norm ‖ f ‖W k,p = ‖ f ‖Lp +
∑

|α|≤k ‖∂
α f ‖Lp , while for a non-integer s one takes

‖ f ‖W s,p = ‖(1−∆)s/2 f ‖Lp ∼ ‖ f ‖Lp +‖|∇|
s f ‖Lp .

The Sobolev embedding theorem states ‖ f ‖Lp (Rn ) ≤ C‖|∇|s f ‖Lq (Rn ), where 1 < p < q < ∞ and

n( 1
p
− 1

q
) = s, with the usual modification for p =∞, namely ‖ f ‖L∞(Rn ) ≤Cs‖ f ‖W s,q (Rn ), s > n

p
. In

particular, an estimate that will be useful for us, is

(2.1) ‖(|∇|⊥)−β f ‖Lp ≤C‖ f ‖Lq , 1< p < q <∞,β= n(
1

q
−

1

p
)

This follows from the Mikhlin’s criteria for Lp ,1 < p <∞ boundedness. Sometimes, we use the

following replacement of (2.1), when p =∞ and β< n,

(2.2) ‖(|∇|⊥)−β f ‖L∞ ≤Cǫ(‖ f ‖
L

n
β
+ǫ +‖ f ‖

L
n
β
−ǫ).

We provide a proof for this inequality in Appendix (A). Note that these estimates hold in a more

general setting, when |∇|⊥)−β is replaced by an arbitrary symbol of order −β, that is

(2.3) ‖m−β(∇) f ‖L∞ ≤Cǫ(‖ f ‖
L

n
β
+ǫ +‖ f ‖

L
n
β
−ǫ).

Another useful ingredient will be the Gagliardo - Nirenberg interpolation inequality,

‖|∇|
s f ‖Lp ≤ ‖|∇|

s1 f ‖θLq‖|∇|
s2 f ‖1−θ

Lr ,

where s = θs1 + (1−θ)s2 and 1
p
= 1

q
+ 1

r
.
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For the optimal decay rates, we will need to argue in the weighted spaces. For any m ≥ 0 we

define the Hilbert space L2(m) as follow

(2.4) L2(m) =
{

f ∈ L2 : ‖ f ‖L2(m) =

(∫

R2
(1+|x|2)m

| f (x)|2d x
) 1

2
<∞

}

One can show by means of Hölder’s, L2(2) ,→ Lp (R2), whenever 1 ≤ p ≤ 2.

2.2. The fractional Laplacian. First, we record the following kernel representation formula for

negative powers of Laplacian. This is nothing, but a fractional integral - for a ∈ (0,2),

(2.5) |∇|
−a f (x) = ca

∫

R2

f (y)

|x − y |2−a
d y.

For positive powers, we have a similar formula - for a ∈ (0,2),

|∇|
a f (x) =Ca p.v.

∫

R2

f (x)− f (y)

|x − y |2+a
d y.

see Proposition 2.1, [7]). Next, we have the following result, due to Cordoba-Cordoba.

Lemma 1. (Lemma 2.4, 2.5, [7], Theorem 2, [5]) For p : 1 ≤ p <∞, a ∈ [0,2] and f ∈W a,p (R2),

(2.6)

∫

R2
| f (x)|p−2 f (x)[|∇|a f ](x)d x ≥ 0.

If in addition, p = 2n ,n = 1,2, . . ., there is the stronger coercivity estimate

(2.7)

∫

R2
| f (x)|p−2 f (x)[|∇|a f ](x)d x ≥

1

p
‖|∇|

a
2 [ f

p
2 ]‖2

L2(R2)
.

Finally, for p ∈ [1,∞), a ∈ (0,2),

(2.8)

∫

R2
| f (x)|p−2 f (x)[|∇|a f ](x)d x ≥

1

p
‖ f ‖2

L
2p

2−a (R2)
.

2.3. The function G . The function G defined by Ĝ(p) = e−|p|α , p ∈ R2 will be used frequently in

the sequel. We list and prove some important properties.

Lemma 2. For any p ∈ [2,∞] and α ∈ (1,2),

(2.9) (1+|ξ|2) G(ξ), (1+|ξ|2)∇G(ξ) ∈ L
p

ξ

In particular, G ,∇G ∈ L1(R2)∩L∞(R2).

Note: For α ∈ (1,2), the function G does not belong to L2(3), due to the lack of smoothness of

Ĝ at zero (or what is equivalent to the lack of decay of G at ∞).

Proof. For the L2 estimate, ‖G‖L2 = ‖Ĝ‖L2 <∞. Since Ĝ is a radial function

‖|ξ|2G(ξ)‖L2 = ‖∆pĜ(p)‖L2 = ‖∆p e−|p|α
‖L2 = ‖(∂ρρ+

1

ρ
∂ρ)(e−ρα

)‖L2(ρdρ).

But, (∂ρρ +
1
ρ∂ρ)(e−ρα

) = −α(α− 1)ρα−2e−ρα
+α2ρ2(α−1)e−ρα

. Therefore, ‖|ξ|2G(ξ)‖2
L2 ≤ I1 + I2,

where I1 = ‖ρα−2e−ρα
‖2

L2(ρdρ)
, I2 = ‖ρ2(α−1)e−ρα

‖2
L2(ρdρ)

. We have

I1 ≤

∫1

0

1

ρ2(2−α)−1
dρ+

∫∞

1
ρ2(α−2)+1e−2ρα

ρ dρ.
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Since 2(2−α)− 1 < 1, the first term is bounded. The second term is also bounded by the ex-

ponential decay, whence I1 is bounded. The second term, I2 = ‖ρ2(α−1)e−ρα
‖2

L2(ρdρ)
is also

bounded - no singularity at zero and exponential decay at ∞. This proves the L2 estimate.

For the L∞ estimate we can use the Hausdorf-Young’s to bound ‖G‖L∞ ≤ ‖Ĝ‖L1 <∞. Simi-

larly,

‖|ξ|2G(ξ)‖L∞ ≤ ‖∆pĜ(p)‖L1 ≤α(α−1)

∫∞

0
ρα−2e−ρα

ρdρ+α2

∫∞

0
ρ2(α−1)e−ρα

ρdρ

≤ α(α−1)

∫∞

0
ρα−1e−ρα

dρ+α2

∫∞

0
ρ2α−1e−ρα

dρ <∞.

Now the interpolation between L2 and L∞ yields (1+|ξ|2) G(ξ)∈ L
p

ξ
,1 ≤ p ≤∞.

Regarding the claims about ∇G , it is easy to see that ‖|ξ|2∇G‖L2 = ‖∆p [pe−|p|α]‖L2 <∞. In-

deed, the last conclusion follows easily from an identical argument as the one above, as the cen-

tral issue was the singularity at zero for ‖∆p e−|p|α‖L2 . Now the situation is better as we multiply

by p, which actually alleviates the singularity at zero. Similar is the argument about ‖|ξ|2∇G‖L∞ ,

we omit the details. �

The following Lemma will be used frequently in the next sections - it is an easy consequence

of the Hausdorff-Young’s inequality.

Lemma 3. Let α> 0, then for any t > 0 and 1 ≤ p ≤∞,

‖e−t |∇|α f ‖Lp ≤ C‖ f ‖Lp(2.10)

‖e−t |∇|α
∇ f ‖Lp ≤ C t−

1
α ‖ f ‖Lp(2.11)

Proof. Clearly,

e−t |∇|α f =

∫
Gt (x − y) f (y)d y

where Ĝt (p) = Ĝ(t
1
α p). Then ‖e−t |∇|α f ‖Lp ≤ ‖Gt‖L1‖ f ‖Lp =C‖ f ‖Lp , where C = ‖G‖L1(R2).

‖e−t |∇|α
∇ f ‖Lp = t−

1
α

∥∥∥
∫

∇G(t−
1
α (·− y)) f (y)d y

∥∥∥
Lp

≤C t−
1
α ‖ f ‖Lp ,

where C = ‖∇G‖L1(R2). �

2.4. Kato-Ponce and commutator estimates. The classical by now product rule estimate, usu-

ally attributed to Kato-Ponce can be stated as follows.

Lemma 4. Let a ∈ (0,1) and 1 < p, q,r <∞, so that 1
p
= 1

q
+ 1

r
. Then, there exists C =Cp,q,r,a

‖|∇|
a [ f g ]‖Lp ≤Cp,q,r,a(‖|∇|a f ‖Lq‖g‖Lr +‖|∇|

a g‖Lq‖ f ‖Lr )

We also make use of the following Lemma from [13].

Lemma 5. Let s1, s2 be two reals so that 0 ≤ s1 and 0 ≤ s2 − s1 ≤ 1. Let p, q,r be related via the

Hölder’s 1
p
= 1

q
+ 1

r
, where 2< q <∞, 1 < p,r <∞. Finally, let ∇·V = 0. Then for any a ∈ [s2−s1,1]

‖|∇|
−s1 [|∇|s2 ,V ·∇]ϕ‖Lp ≤C‖|∇|

aV ‖Lq‖|∇|
s2−s1+1−aϕ‖Lr(2.12)

In addition, we have the following end-point estimate. For s1 > 0, s2 > 0, s3 > 0 and s1 < 1, s3 <

1, s2 < s1 + s3, there is

(2.13) ‖|∇|
−s1 [|∇|s2 , |∇|−s3V ·∇]ϕ‖L2 ≤C‖V ‖L∞‖|∇|

s2−s1+1−s3ϕ‖L2 .
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2.5. A variant of the Gronwall’s inequality. We shall need a version of the Gronwall’s inequality

as follows.

Lemma 6. Let σ> 0,µ> 0,κ> 0 and a ∈ [0,1). Let A1, A2, A3 be three positive constants so that a

function I : [0,∞) → R+ satisfies I (τ)≤ A1e−γτ, for some real γ and

(2.14) I (τ)≤ A2e−µτ
+ A3

∫τ

0

e−σ(τ−s)

(min(1, |τ− s|)a
e−κs I (s)d s.

Then, there exists C =Ca,σ,µ,κ,γ, so that

I (τ)≤Ca,σ,µ,κ,γ(1+|A1|+ |A2|+ |A3|)e−µτ.

The proof of Lemma 6 is rather elementary, but we provide it for completeness in the Appen-

dix.

3. THE OPERATOR L IN L2(2): SPECTRAL ANALYSIS AND SEMIGROUP ESTIMATES

3.1. Spectral theory for L . The following result discusses the spectrum of L .

Proposition 1. Let L be as defined in (1.12), then

(1) The discrete spectrum: Let k ∈N∪{0} be fixed and σ= (σ1,σ2) be such that |σ| =σ1+σ2 =

k . Then the function φσ(ξ) defined by

(3.1) φσ(ξ) = ∂
σ1

1 ∂
σ2

2 G ,

is an eigenfunction of the multiplicity greater or equal to
(k+1

k

)
= k+1 related to the eigen-

value λk = 1−
3−β+k

α . In fact,

σd (L ) ⊇
{
λk ∈C : λk = 1−

3−β+k

α
;k = 0,1,2, · · ·

}
.

(2) The continuous spectrum: Let µ ∈C be such that ℜµ≤− 1
α

and define, ψµ ∈ L2 such that

(3.2) ψ̂µ(p) = |p|−αµe−|p|α .

Then ψµ is an eigenfunction of the operator L with the corresponding eigenvalue6 λ =

1+µ−
3−β
α

. In fact,

σess (L ) ⊇
{
λ ∈C : ℜλ≤ 1−

4−β

α

}
.

Proof. Regarding discrete spectrum, we start with a calculation, which will allow us to identify

some of the eigenvalues. Let φ0(ξ) be a radial function, i.e. φ̂0(p) = g (|p|). Then

�Lφ0(p) = á−|∇|αφ0 +
1

α
áξ ·∇ξφ0(p)+

(
1+

β−1

α

)
φ̂0(p) =

= −|p|αφ̂0(p)−
2

α
φ̂0(p)−

1

α

2∑

j=1

p j∂ j φ̂0(p)+

(
1+

β−1

α

)
φ̂0(p) =

= −|p|αg (|p|)−
2

α
φ̂0(p)−

1

α

2∑

j=1

p j g ′(|p|)
p j

|p|
+

(
1+

β−1

α

)
φ̂0(p) =

=

(
1+

β−3

α

)
φ̂0(p)+

(
−|p|αg (|p|)−

1

α
|p| g ′(|p|)

)
(3.3)

6Note however that all this eigenvalues are not isolated, hence they are in the essential spectrum.
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Now if g satisfies,

(3.4) −|p|αg (|p|)−
1

α
|p| g ′(|p|) = 0

then clearly λ=

(
1−

3−β
α

)
is an eigenvalue for L . The solution of (3.4), gives the eigenfunction,

φ̂0(p) = e−|p|α or φ0 =G .

Now, let φk be an eigenfunction corresponding to the eigenvalue λk =

(
1−

3−β+k

α

)
, that is

(3.5) Lφk (ξ) =

(
1−

3−β+k

α

)
φk

Taking a derivative ∂ j in (3.5), we obtain
(
1−

3−β+k

α

)
∂ jφk = ∂ j Lφk (ξ) =−|∇|

α∂ jφk +
1

α
∂ j (ξ ·∇φk )+

(
1−

3−β+k

α

)
∂ jφk =

= −|∇|
α∂ jφk +

1

α
∂ jφk +

1

α
ξ ·∇(∂ jφk)+

(
1−

3−β+k

α

)
∂ jφk(ξ) =

= L [∂ jφk]+
1

α
∂ jφk .

It follows that

L [∂ jφk] =

(
1−

3−β+ (k +1)

α

)
∂ jφk

It follows that
(
1−

3−β+k+1

α

)
is an eigenvalue, corresponding to an eigenfunction ∂ jφk . Thus, we

have identified a family of eigenvalues and eigenvectors as follows. Fix k ∈N, and let (σ1,σ2) be

so that σ1+σ2 = k. Then, by induction, for the function φk := ∂
σ1

1 ∂
σ2

2 φ0, we have (3.5). Note that

what we have proved so far does not guarantee that there is not any more discrete spectrum,

but merely an inclusion, as stated.

Regarding essential spectrum, we compute �Lψµ. From the calculation (3.3), we have

�Lψµ(p) =

(
µ+1+

β−3

α

)
ψ̂µ(p),

whence ψµ is an eigenfunction. Indeed, ψµ ∈ L2(2), when ℜµ ≤ −
1
α . This is easy to see with a

computation similar to the ones performed in Lemma 2.

‖|ξ|2ψµ‖
2
L2 = ‖∆pψ̂µ‖

2
L2 =

∫∞

0
|(∂ρρ +

1

ρ
∂ρ)ρ−αµe−ρα

|
2ρdρ.

The worst term (when α> 1) is exactly
∫1

0 ρ−(3+2αµ)dρ, which converges for ℜµ<− 1
α . �

3.2. The semigroup eτL . The following proposition yields an explicit formula for the semi-

group eτL . This is an extension of the formula established in [9].

Proposition 2. The operator L defines a C0 semigroup on L2(2)(R2), eτL . In fact, we have the

following formula for its action

à(eτL f )(p) = e (1−
3−β
α )τe−a(τ)|p|α f̂ (e− τ

α p),(3.6)

(eτL f )(ξ) =
e (1−

1−β
α )τ

a(τ)
2
α

∫

R2
G

(
ξ−η

a(τ)
1
α

)
f (e

τ
αη)dη,(3.7)
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where a(τ) = 1−e−τ. In particular, for 1 ≤ p ≤∞,

‖eτL f ‖Lp ≤ C e
(1−

1−β
α − 2

αp )τ
‖ f ‖Lp(3.8)

‖eτL
∇ f ‖Lp ≤ C

e
(1−

2−β
α − 2

αp )τ

a(τ)
1
α

‖ f ‖Lp .(3.9)

Remark: Note that a(τ) ∼ min(1,τ). This will be used frequently in the sequel.

Proof. The generation of the semigroup would follow, once we prove that the function

g : ĝ (τ, p) := e (1−
3−β
α )τe−a(τ)|p|α f̂ (p · e− τ

α ) satisfies ∂τĝ (τ, p) = áL g (τ, ·). Clearly, ĝ (0, p) = f̂ (p), so

g (0,ξ)= f (ξ). Next, we compute ∂τ ĝ (τ, p). We have

∂τĝ (τ, p) =

[
(1−

3−β

α
−a′(τ)|p|α) f̂ (p ·e− τ

α )−
1

α
e− τ

α p ·∇p f̂ (p ·e− τ
α )

]
eτ(1−

3−β
α )e−a(τ)|p|α

=

=

(
1+

β−3

α

)
ĝ (p)+ (a(τ)−1)|p|α ĝ (p)−

1

α
e−

τ
α p ·∇p f̂ (p ·e−

τ
α )eτ(1−

3−β
α )e−a(τ)|p|α ,

where we have used the relation a′(τ) = 1−a(τ). Next, by (3.3), we have

áL g (τ, ·) = −|p|α ĝ (p)−
1

α

2∑

j=1

p j∂ j ĝ (p)+

(
1+

β−3

α

)
ĝ (p).

But,

1

α

2∑

j=1

p j∂ j ĝ (p) =
1

α

2∑

j=1

p j

(
−αa(τ)p j |p|

α−2 f̂ (p ·e− τ
α )+e− τ

α∂ j f̂ (p ·e− τ
α )

)
eτ(1−

3−β
α )e−a(τ)|p|α

= −a(τ)|p|α f̂ (p ·e−
τ
α )eτ(1−

3−β
α )e−a(τ)|p|α

+
1

α
e−

τ
α p ·∇p f̂ (p ·e−

τ
α )eτ(1−

3−β
α )e−a(τ)|p|α .

Altogether,

áL g (τ, ·) = −|p|α ĝ (p)+

(
1+

β−3

α

)
ĝ (p)+a(τ)|p|α ĝ (p)−

−
1

α
e− τ

α p ·∇p f̂ (p ·e− τ
α )eτ(1−

3−β
α )e−a(τ)|p|α .

An immediate inspection reveals that ∂τĝ (τ, p) = áL g (τ, ·)(p) and so the semigroup formula

(3.6) is established. The formula (3.7) is just a Fourier inversion of (3.6). Regarding the estimate

(3.8), we proceed as follows

‖eτL f ‖Lp ≤ e (1−
1−β
α )τ

‖G
a(τ)

1
α
‖L1‖ f (e

τ
α ·)‖Lp = e

(1−
1−β
α − 2

αp )τ
‖G‖L1‖ f ‖Lp .

For (3.9), note that integration by parts yields

(eτL∂ j f )(ξ) =
e (1−

1−β
α )τ

a(τ)
2
α

∫

R2
G

(
ξ−η

a(τ)
1
α

)
(∂ j f )(e

τ
αη)dη=

e (1−
2−β
α )τ

a(τ)
3
α

∫

R2
∂ j G

(
ξ−η

a(τ)
1
α

)
f (e

τ
αη)dη,

whence

‖(eτL
∇ f )(ξ)‖Lp ≤

e
(1−

2−β
α −

2
αp )τ

a(τ)
1
α

‖∇G‖L1‖ f ‖Lp .

�
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We need a variant of Proposition A.2 in [9], which discusses the commutation of the semi-

group with differential operators.

Lemma 7. We have the following commutation relation for eτL

(3.10) ∇eτL
= e

τ
α eτL

∇

Proof. Let u(x,τ) = eτL f (x), then u satisfies the following equation
{

uτ =L u,

u(0, x) = f (x).

Clearly, taking a derivative ∂ j in (1.12) yields, for j = 1,2
{

(∂ j u)τ = ∂ j (L u) =L ∂ j u +
1
α∂ j u,

∂ j u(x,0) = ∂ j f (x),

which has the solution ∂ j u(x,τ) = eτ[L+
1
α ]∂ j f (x). In other words ∇eτL = e

τ
α eτL∇. �

3.3. Semigroup estimates. We need to address an important question, namely the behavior

of the bounded operators eτL on L2(2). The next Proposition does that. More precisely, we

are interested in the decay of the operator norms ‖eτL ‖L2(2)→L2(2). Importantly, good decay

estimates only happen, when the functions have mean value zero.

Proposition 3. Let f ∈ L2(2), f̂ (0) = 0 and γ= (γ1,γ2) ∈ N2, |γ| = 0,1 and 0 < ǫ<< 1. Then there

exists C =Cǫ > 0, such that for any τ> 0,

(3.11) ‖∇
γ(eτL f )‖L2(2) ≤C

e

(
1−

4−β
α +ǫ

)
τ

a(τ)
|γ|
α

‖ f ‖L2(2),

or

(3.12) ‖∇
γ(eτL f )‖L2(2) ≤C‖ f ‖L2(2) ·





τ−
|γ|
α , τ≤ 1

e

(
1−

4−β
α +ǫ

)
τ

, τ> 1

3.4. The decay estimates for eτL give a description of the spectrum of L . In this section,

we show that the spectral inclusions in Proposition 1 are actually equalities. We also compute

explicitly the Riesz projection P0 onto the eigenvalue of L with the largest real part. In Propo-

sition 1, we have already identified G as being an eigenfunction for L corresponding to an

eigenvalue λ0 = 1−
3−β
α

. On the other hand, applying Proposition 3, for functions with f̂ (0) = 0

and γ= (0,0), implies

(3.13) ‖eτL f ‖L2(2) ≤Cǫe

(
1−

4−β
α +ǫ

)
τ
‖ f ‖L2(2).

Denote the co-dimension one subspace X0 = { f ∈ L2(2) : f̂ (0) = 0}. Clearly, the operator L

acts invariantly on X0, since for every f ∈ L2(2) :
∫

f (ξ)dξ= 0, we have
∫

R2 ξ ·∇ f dξ= 0, whence∫
L f (ξ)dξ= 0.

Introduce L0 :=L |X0 , with domain D(L0) = D(L )∩ X0 = Hα∩ X0. By the Hille-Yosida the-

orem, this estimate (3.13) implies that the set {λ : ℜλ >

(
1−

4−β
α

)
} is in the resolvent set of L0,

since the integral representing (λ−L )−1, namely
∫∞

0 e−λτeτL dτ, converges by virtue of (3.13).

Combining this with the results from Proposition 1, we conclude thatσ(L )∩{λ : ℜλ>

(
1−

4−β
α

)
}
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is a singleton - the eigenvalue λ0 = 1−
3−β
α , which is simple, with eigenfunction G . We conclude

that

σ(L ) = {1−
3−β

α
}∪σess (L ); σess (L ) = {λ : ℜλ≤

(
1−

4−β

α

)
},

Moreover, its Riesz projection P0, a rank one operator, is given by

P0 f =

(∫

R2
f (ξ)dξ

)
G

Clearly, such an operator is well-normalized, since P
2
0 f = 〈G ,1〉P0 f = Ĝ(0)P0 f = P0 f , since

Ĝ(0) = 1. The projection Q0 := I d −P0 over the complementary part of the spectrum, satisfies

L0 =Q0LQ0. Also, Q0 : L2(2) → X0. Now, (3.13) can be reformulated as

(3.14) ‖∇
γeτL0 f ‖L2(2) ≤Cǫ

e

(
1−

4−β
α +ǫ

)
τ

a(τ)
|γ|
α

‖ f ‖L2(2).

for any function f , since eτL0 f = eτL
Q0 f and the entry Q0 f has mean value zero, so (3.13) is

applicable. In addition, we can derive estimates for the action of the semigroup eτL on L2(2),

without the mean value zero property f̂ (0) = 0.

Proposition 4. Let f ∈ L2(2) and 0 < ǫ< 1
α

. Then, there exists a constant C =Cǫ, so that

(3.15) ‖∇
γ(eτL f )‖L2(2) ≤Cǫ

e

(
1−

3−β
α

)
τ

a(τ)
|γ|
α

‖ f ‖L2(2).

Proof. We use the decomposition

f =P0 f +Q0 f = 〈 f ,1〉G + [ f −〈 f ,1〉G].

Thus,

eτL f = 〈 f ,1〉eτ(1−
3−β
α )G +eτL0[ f ]

It follows that

‖eτL f ‖L2(2) ≤ C |〈 f ,1〉|eτ(1−
3−β
α )

‖G‖L2(2) +Cǫe

(
1−

4−β
α +ǫ

)
τ
‖ f ‖L2(2)

≤ C eτ(1−
3−β
α )

‖ f ‖L2(2),

where we have used (3.14) and |〈 f ,1〉| ≤C‖ f ‖L2(2). Similar estimates can be derived, as before,

for ∇γeτL , we omit the details.

�

4. LOCAL AND GLOBAL WELL-POSEDNESS OF THE SQG

The local and global theory of the Cauchy problem for SQG has been well-studied in the lit-

erature. Local and global well-posedness holds under very general conditions on initial data.

Regardless, we will present a few results for our problem (1.3). This is necessary, since we as-

sume a non-standard relation between u and z, but also because we need precise properties,

beyond the scope of the well-posedness. Then, we will turn to properties of the rescaled equa-

tion, (1.11). We will do so, both in Lp spaces as well as in L2(2) spaces - the reason is that we will

use some of our preliminary results as a priori estimates in the subsequent Lemmas.
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Our first results are about the well-posedness of the standard model (1.3) in Lp spaces7.

4.1. Global well-posedness and a priori estimates in Lp spaces.

Lemma 8. Suppose that z0 ∈ L1 ∩ L∞ =: X . Then, (1.3) is globally well-posed in the space X .

Moreover, for every p ∈ [1,∞], t →‖z(·, t )‖Lp is non-increasing in time.

Proof. We first prove the local existence of the strong solution in the space C ([0,T ); X ), that is,

with T to be determined, we are looking for a fixed point of the integral equation

(4.1) z(ξ) = e−t |∇|αz0 −

∫t

0
e−(t−s)|∇|α

∇(u · z) d s.

According to Lemma (3) ‖e−t |∇|α z0‖L1∩L∞ ≤C0‖z0‖L1∩L∞ . For any T > 0 and t ∈ (0,T ), consider

Q(z1, z2) :=

∫t

0
e−(t−s)|∇|α

∇(u1 · z2) d s,

where u1 is given by u1 = (∇⊥)−βz1. For t ∈ (0,T ), using (2.11)

‖Q(z1(t ), z2(t ))‖L1 = ‖

∫t

0
e−(t−s)|∇|α

∇(u1 · z2) d s‖L1 ≤C

∫t

0

1

(t − s)
1
α

‖(u1 · z2)‖L1 d s

≤ C t 1− 1
α sup

0≤s≤T
‖u1(s, ·)‖L∞ sup

0≤s≤T
‖z2(s, ·)‖L1 ≤

. T 1− 1
α sup

0≤s≤T
(‖z1(s, ·)‖

L
2
β
+ǫ +‖z1(s, ·)‖

L
2
β
−ǫ) sup

0≤s≤T
‖z2(s, ·)‖L1 . T 1− 1

α sup
0≤s≤T

‖z1‖X sup
0≤s≤T

‖z2‖X .

where we have used the Sobolev embedding estimate (2.2). Similarly,

‖Q(z1, z2)‖L∞ ≤C T 1− 1
α sup

0≤s≤T
‖u1‖L∞ sup

0≤s≤T
‖z2‖L∞ ≤C T 1− 1

α sup
0≤s≤T

‖z1‖X sup
0≤s≤T

‖z2‖X .

Finally, following similar path, we also have

‖Q(z1, z1)−Q(z2, z2)‖X ≤C T 1− 1
α (‖z1‖X +‖z2‖X )‖z1 − z2‖X .

Upon introducing YT := {z : sup0≤t≤T ‖z(t , ·)‖X ≤ 2C0‖z0‖X } and taking into account the esti-

mates above, we realize that the mapping (4.1) has a fixed point in the metric space C ([0,T ], X ),

for small enough T = T (‖z0‖X ). In fact, the argument shows that T ∼ ‖z0‖
−

α
α−1

X
.

For the global existence, we need to show that the t → ‖z(t , ·)‖Lp does not blow up in finite

time. In fact, we show that the t →‖z(t , ·)‖Lp is non-increasing, which will allow us to conclude

global existence as well. To that end, we dot product the equation (1.3) with |z|p−2z, p ∈ (1,∞)

to get

1

p
∂t‖z‖

p

Lp +

∫

R2
|∇|

αz · |z|p−2zdξ= 0.

By the positivity estimate (2.6), we have
∫

R2 |∇|
αz · |z|p−2zdξ ≥ 0. Therefore, ∂t‖z‖

p

Lp ≤ 0, and

t → ‖z(t , ·)‖Lp is non-increasing in time. For p = 1, p = ∞ the monotonicity follows from an

approximation argument from the cases 1< p <∞.

�

7The results can be made more precise, in individual Lp spaces, rather than in all Lp spaces. We will not do so

here, because our goal is to extend to L2(2), which is yet smaller space.
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Our next result is about a priori estimates in Lp spaces, but this time in the rescaled variable

formulation, (1.11). Note that the global existence of the rescaled equation is not in question

anymore, due to Lemma 8. However, we show precise decay estimates for the norm of the

solution Z . This fairly elementary Lemma already shows the advantage of the rescaled variables

approach and its far reaching consequences.

Lemma 9. Let Z0 ∈ L1∩L∞(R2), α ∈ (1,2), 0 ≤β< 2 and p ∈ [1,∞). Then the unique global strong

solution Z of (1.11) satisfies

(4.2) ‖Z (τ)‖Lp ≤ ‖Z0‖Lp e
−τ( 2

pα−1−
β−1
α )

.

Proof. If we dot product (1.11) with Z |Z |p−2, we have by the positivity estimate (2.6),∫
R2 |∇|

αZ · |Z |p−2 Z dξ≥ 0. Furthermore, using the divergent free property of U (ξ)

1

p

d

dτ
‖Z‖

p

Lp ≤
1

α

∫
(ξ ·∇ξZ )Z |Z |

p−2 dξ−

∫
(U ·∇ξZ )Z |Z |

p−2dξ+

+

(
1+

β−1

α

)
‖Z‖

p

Lp =

(
1+

β−1

α
−

2

αp

)
‖Z‖

p

Lp ,(4.3)

therefore, we arrive at

1

p

d

dτ
‖Z‖

p

Lp + (
2

αp
−1−

β−1

α
)‖Z‖

p

Lp ≤ 0.

Now we use the Gronwall’s inequality to finish the proof. �

The Lemma above shows a priori bound for ‖Z (τ, ·)‖Lp , for any p ∈ [1,∞], and a decay rate

for p < 2
α+β−1

, but it is not giving any decay rate for p ≥ 2
α+β−1

. On the other hand, as we shall

see later, the decay rate predicted by Lemma 9 is in fact optimal for p = 1 (but certainly not so,

for any other value of p). We can bootstrap the results of Lemma 9 in the next Lemma to find,

what it will turn out to be, the optimal decay rate8 for any p ≥ 1.

Lemma 10. Let Z0 ∈ L1 ∩L∞(R2),1 ≤ p ≤∞ and α ∈ (1,2), α+β≤ 3. Then, there exists constant

C =Cp,α,β, so that the unique global strong solution Z of (1.11) satisfies

(4.4) ‖Z (τ, ·)‖Lp ≤Cp,α,β‖Z0‖L1∩L∞e−(
3−β−α

α )τ.

Proof. Recall that the estimate (2.8) is available to us. Taking dot product |Z |p−2 Z and taking

into account (2.8) which implies
∫

R2 |∇|
αZ · |Z |p−2 Z dξ ≥ cp,α‖Z‖2

L
2p

2−α

. We further add C‖Z‖
p

Lp ,

for some large C , to be determined. We have

1

p

d

dτ
‖Z‖

p

Lp +C‖Z‖
p

Lp +cp,α‖Z‖
2

L
2p

2−α

≤

(
C +1+

β−1

α
−

2

αp

)
‖Z‖

p

Lp

8for generic data
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By Gagliardo-Nirenberg’s, with γ =
2p−2

2p−2+α , ‖Z‖Lp ≤ ‖Z‖
γ

L
2p

2−α

‖Z‖
1−γ

L1 , whence by Young’s in-

equality

1

p

d

dτ
‖Z‖

p

Lp + C‖Z‖
p

Lp +cp,α‖Z‖
p

L
2p

2−α

≤

(
C +1+

β−1

α
−

2

αp

)
‖Z‖

pγ

L
2p

2−α

‖Z‖
p(1−γ)

L1 ≤

≤ ǫ0‖Z‖
p

L
2p

2−α

+

(
C +1+

β−1

α −
2
αp

) 1
1−γ

ǫ
γ

1−γ

0

‖Z‖
p

L1

and ǫ0 > 0 is a fixed number, say we select it ǫ0 = cp,α. Then

1

p

d

dτ
‖Z‖

p

Lp +C‖Z‖
p

Lp ≤

(
C +1+

β−1

α − 2
αp

) 1
1−γ

ǫ
γ

1−γ

0

‖Z‖
p

L1 ≤

(
C +1+

β−1

α − 2
αp

) 1
1−γ

ǫ
γ

1−γ

0

‖Z0‖
p

L1 e−pτ(
3−β−α

α ),

where we have used Lemma (9) to estimate ‖Z (τ, ·)‖L1 . Denoting µ := (
3−β−α

α ) ≥ 0, select C =

µ+1. We have

I ′(τ)+p(µ+1)I (τ)≤ D‖Z0‖
p

L1 e−pµτ,

where I (τ) = ‖Z (τ)‖
p

Lp , D = p
1+

γ
1−γ

(
µ+2+

β−1
α −

2
αp

) 1
1−γ

c

γ
1−γ
α

. Now we use the Gronwall’s inequality to

derive the estimate

I (τ)≤ e−p(µ+1)τI (0)+
D

p
‖Z0‖

p

L1 e−pµτ.

Taking p th root and simplifying yields the final estimate

‖Z (τ)‖Lp ≤ (‖Z0‖Lp +

(
D

p

) 1
p

‖Z0‖L1 )e−µτ
≤ (1+

(
D

p

) 1
p

)‖Z0‖L1∩L∞e−µτ.

For the case p =∞, we take limits in the previous identity, for fixed τ> 0, as p →∞. Note that

by the explicit form of Dp , limp→∞

(
D
p

) 1
p
= 1, so (4.4) holds true in this case with C = 2. �

4.2. Global solutions and a priori estimates in L2(2). From the previous section, we know that

the SQG equation in its standard form, namely (1.3), has global solutions in Lp . Thus, the

rescaled equation (1.11) also has unique global (strong) solutions in Lp . We now would like to

understand the Cauchy problem in the smaller space L2(2). In particular, even if the initial data

is well-localized, say Z (0, ·) ∈ L2(2), it is not a priori clear why the solution Z (τ) will stay in L2(2)

for (any) later time τ > 0. In other words, one needs to start with the local well-posedness for

(1.11), and then we shall upgrade it to a global one, by means of a priori estimates on ‖Z (τ)‖L2(2).

Theorem 3. Suppose that Z0 ∈ L2(2)(R2)∩L∞(R2) =: X . Then (1.11) has an unique global strong

solution Z ∈ C 0([0,∞];L2(2)(R2) ∩ L∞(R2)), with Z (0) = Z0. In addition, there is the a priori

estimate

(4.5) ‖Z (τ)‖L2(2)∩L∞ ≤C e−τ(
3−α−β

α )
‖Z0‖L2(2)∩L∞ ,

where C is an absolute constant.
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Proof. We set up a local well-posedness scheme for the integral equation corresponding to

(1.11), with initial data Z (0) = f , namely

(4.6) Z (τ) = eτL f −

∫τ

0
e (τ−s)L

∇· (U Z ) d s,

where U =UZ = (|∇|⊥)−βZ . We have, according to (3.8) and (3.15),

‖eτL f ‖L2(2) +‖eτL f ‖L∞ ≤C (e (1−
1−β
α )τ

+e (1−
3−β
α )τ)‖ f ‖L2(2)∩L∞

Thus, with T ≤ 1 to be determined later, set

YT := {Z (τ, ·) ∈ X : sup
0≤s≤T

‖Z (s, ·)‖X ≤ 2C (e (1−
1−β
α )

+e (1−
3−β
α ))‖ f ‖X },

where the bound in Y is selected to be twice the value of the bound above, at τ = 1. For the

non-linear term, we have for each τ ∈ (0,T ),

‖

∫τ

0
e (τ−s)L

∇· (UZ1 Z2) d s‖L∞ ≤C

∫τ

0
C

e (1−
2−β
α )(τ−s)

a(τ− s)
1
α

‖UZ1 (s)Z2(s)‖L∞d s ≤

≤ C sup
0≤s≤T

‖UZ1‖L∞ sup
0≤s≤T

‖Z2‖L∞

∫τ

0

1

(τ− s)
1
α

d s ≤

≤ C T 1− 1
α sup

0≤s≤T
(‖Z1‖

L
2
β
+ǫ +‖Z1‖

L
2
β
−ǫ) sup

0≤s≤T
‖Z2‖L∞ ≤C T 1− 1

α sup
0≤s≤T

‖Z1‖X sup
0≤s≤T

‖Z2‖X ,

where we have used (3.9), e (1−
2−β
α )(τ−s) ≤ 3, a(τ− s) = 1− e−(τ−s) ∼ (τ− s), for 0 < s < τ ≤ 1, the

Sobolev embedding estimate (2.2) and finally the fact that X = L2(2)∩L∞
,→ L1 ∩L∞. For the

other norm in the definition of X , we have by Lemma 7,

‖

∫τ

0
e (τ−s)L

∇· (UZ1 ·Z2) d s‖L2(2) =

∫τ

0
e−

(τ−s)
α ‖∇·e (τ−s)L (UZ1 ·Z2)‖L2(2) d s

≤ C

∫τ

0

e−
(τ−s)
α e (1−

3−β
α )(τ−s)

a(τ− s)
1
α

‖UZ1(s) ·Z2(s)‖L2(2) d s ≤

≤ C sup
0≤s≤T

‖UZ1(s)‖L∞ sup
0≤s≤T

‖Z2(s)‖L2(2)

∫τ

0

1

(τ− s)
1
α

d s ≤C T 1− 1
α sup

0≤s≤T
‖Z1‖X sup

0≤s≤T
‖Z2‖L2(2).

Having these two bilinear estimates allows us to conclude that for sufficiently small T , of the

form T ∼ ‖ f ‖
−

α
α−1

X
(which should also be taken T ≤ 1), we have local well-posedness in the space

X .

Regarding global existence in X = L2(2)∩L∞, we obviously need a priori estimates for the

solution to prevent potential blow up. We already have those in L∞ and in L2, by the results of

Lemma 10. Thus, it remains to control the norm J (τ) :=
∫

R2 |ξ|4|Z (τ,ξ)|2dξ. To this end, take a

dot product of the equation (1.11) with |ξ|4 Z . We have

∂τ
1

2

∫
|ξ|4 Z 2dξ+

∫
|ξ|4|∇|αZ ·Z dξ=

=
1

α

∫
(ξ ·∇ξZ )|ξ|4 Z dξ−

∫
(U ·∇ξZ )|ξ|4 Z dξ+ (1+

β−1

α
)

∫
|ξ|4Z 2dξ.

We first analyze the terms on the right hand-side. Integration by parts yields

1

α

∫
(ξ ·∇ξZ )|ξ|4 Z dξ=−

3

α

∫
|ξ|4 Z 2dξ;

∫
(U ·∇ξZ )|ξ|4 Z dξ=−2

∫
|ξ|2(ξ ·U )Z 2dξ.
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Note that by Young’s inequality, we have for all ǫ> 0

|

∫
|ξ|2(ξ ·U )Z 2dξ| ≤C

∫
|ξ|3‖U‖L∞Z 2(ξ)dξ≤ ǫ

∫
|ξ|4Z 2(ξ)dξ+Cǫ−3

‖U‖
4
L∞‖Z‖

2
L2 .

By the Sobolev embedding (2.2) and Lemma 10, we have

‖U‖L∞ ≤C (‖Z‖
L

2
β
+ǫ +‖Z‖

L
2
β
−ǫ) ≤C e−(

3−β−α
α )τ,

so for every ǫ> 0, we have the estimate

|

∫
|ξ|2(ξ ·U )Z 2dξ| ≤ ǫ

∫
|ξ|4 Z 2(ξ)dξ+Cǫ−3e−6τ(

3−β−α
α ).

The term
∫
|ξ|4|∇|αZ ·Z dξ will give rise to some harder error terms (involving commutators

between the |∇|α/2 and the weights), which we need to eventually control. It turns out that the

most advantageous way to reign in the error terms is to split the weight |ξ|4 between the two

entries. More precisely,
∫

|ξ|4|∇|αZ ·Z dξ=

∫
|ξ|2|∇|αZ · |ξ|2 Z dξ= 〈|ξ|2|∇|α/2[|∇|α/2Z ], |ξ|2 Z 〉 =

= 〈|∇|
α/2

|ξ|2[|∇|α/2 Z ], |ξ|2 Z 〉−〈[|∇|α/2, |ξ|2][|∇|α/2Z ], |ξ|2 Z 〉 =

= 〈|ξ|2[|∇|α/2 Z ], |∇|α/2[|ξ|2 Z ]〉−〈[|∇|α/2, |ξ|2][|∇|α/2 Z ], |ξ|2 Z 〉 =

= 〈|ξ|2|∇|α/2Z , |ξ|2|∇|α/2 Z 〉+〈|ξ|2|∇|α/2 Z , [|∇|α/2, |ξ|2]Z 〉−〈[|∇|α/2, |ξ|2][|∇|α/2 Z ], |ξ|2 Z 〉 =

=

∫
|ξ|4||∇|

α
2 Z |

2dξ+〈|ξ|2|∇|α/2Z , [|∇|α/2, |ξ|2]Z 〉−〈[|∇|α/2, |ξ|2][|∇|α/2 Z ], |ξ|2 Z 〉.

Denote the error terms E := 〈|ξ|2|∇|α/2Z , [|∇|α/2, |ξ|2]Z 〉 − 〈[|∇|α/2, |ξ|2][|∇|α/2 Z ], |ξ|2 Z 〉. Putting

it all together implies

1

2
J ′(τ)+ (

4−α−β

α
−ǫ)J (τ)+

∫
|ξ|4||∇|

α
2 Z |

2dξ≤ |E |+Cǫ−3e−6τ(
3−β−α

α )(4.7)

. ‖|ξ|2|∇|α/2Z‖L2‖[|∇|α/2, |ξ|2]Z‖L2 +‖[|∇|α/2, |ξ|2][|∇|α/2 Z ]‖L2‖|ξ|2 Z‖L2 +ǫ−3e−6τ(
3−β−α

α ).

At this point, it becomes clear that we need to control the commutator expression above. In

fact, we have the following Lemma.

Lemma 11. Let α ∈ (1,2). Then, there is C =Cα, so that

(4.8) ‖[|∇|α/2, |ξ|2] f ‖L2(R2) ≤C‖|ξ|2−
α
2 f ‖L2(R2).

We postpone the proof of Lemma 11 for the Appendix, see Section C. We finish the proof of

Theorem 3 based upon it. By Gagliardo-Nirenberg’s inequality

‖|ξ|2−
α
2 g‖L2 ≤ ‖|ξ|2g‖

1−α
4

L2 ‖g‖
α
4

L2 .

Continuing with our arguments above (see (4.7)), we conclude from Lemma 11 that

1

2
J ′(τ)+ (

4−α−β

α
−ǫ)J (τ)+‖|ξ|2|∇|α/2 Z‖

2
L2 ≤ ǫ‖|ξ|2|∇|α/2 Z‖

2
L2 +ǫ‖|ξ|2 Z‖

2
L2 +Cǫ‖Z‖

2
L2

All in all, for all ǫ< 1, we have by Lemma 10,

1

2
J ′(τ)+ (

4−α−β

α
−2ǫ)J (τ) ≤Cǫ‖Z‖

2
L2 ≤C‖Z0‖

2
L1∩L∞e−2τ(

3−β−α
α ).
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By Gronwall’s, we finally conclude that

J (τ) ≤ J (0)e−2τ(
4−α−β

α −2ǫ)
+C‖Z0‖

2
L1∩L∞e−2τ(

3−α−β
α ).

As a consequence

‖|ξ|2Z (τ)‖L2 ≤C‖Z0‖L2(2)∩L∞e−τ(
3−α−β

α ).

This completes the proof of Theorem 3. �

5. LOCAL AND GLOBAL EXISTENCE OF THE SOLUTIONS TO THE BOUSSINESQ SYSTEM

The results of this section closely mirror Section 4. Consequently, we omit many of the argu-

ments, when they are virtually the same. There are however a few important distinctions, which

we will highlight herein.

5.1. Global regularity for the vorticity (ω,θ) Boussinesq system in Lp (R2). Our first result is,

non-surprisingly, is a local existence and uniqueness result in Lp (R2). Most of the claims in

this Lemma are either well-known or follow classical arguments, but we provide a sketch of the

proof for completeness.

Lemma 12. Suppose that ω0,θ0 ∈ Lp , 1 ≤ p ≤∞. Then there exists T = T (‖(ω0,θ0)‖L1∩L∞), such

that unique strong solutions ω,θ ∈C ([0,T );L1 ∩L∞) exist.

Moreover, the solutions ω(t ),θ(t ) exist globally. In addition, the function t → ‖θ(t , ·)‖Lp ,1 ≤

p ≤∞ is non-increasing, ‖θ(t , ·)‖Lp ≤ ‖θ0‖Lp ,1 < p <∞, while

‖u(t , ·)‖L2 ≤ ‖u0‖L2 + t‖θ0‖L2 .

Proof. For the local existence, we work in the space X = L1 ∩L∞ =∩Lp . The strong solutions of

the system of equations (1.7) are solutions of the integral equations

(5.1)

{
ω(ξ, t ) = e−t |∇|αω0 +

∫t
0 e−(t−s)|∇|α∇(u ·ω) d s −

∫t
0 e−(t−s)|∇|α∂1θ d s,

θ(ξ, t ) = e−t |∇|αθ0 +
∫t

0 e−(t−s)|∇|α∇(u ·θ) d s.

By (2.10), we have that

‖e−t |∇|αω0‖X +‖e−t |∇|αθ0‖X ≤C (‖ω0‖X +‖θ0‖X )

One can now consider the space Y := {(ω,θ) : sup0≤t≤T [‖ω‖X +‖θ‖X ] ≤ 2C (‖ω0‖X +‖θ0‖X )}. For

the bilinear forms

Q1(ω1,ω2) =

∫t

0
e−(t−s)|∇|α

∇(u ·ω) d s,Q2(ω1,θ) =

∫t

0
e−(t−s)|∇|α

∇(u ·θ) d s

where u = (∇⊥)−1ω1, we establish the estimates

‖Q1(ω1,ω2)−Q1(ω̃1,ω̃2)‖X ≤ C T 1− 1
α (‖(ω1,ω2)‖X +‖(ω̃1,ω̃2)‖X )(‖ω1 − ω̃1‖X +‖ω2 − ω̃2‖X )

‖Q2(ω1,θ)−Q2(ω̃1, θ̃)‖X ≤ C T 1− 1
α (‖(ω1,θ)‖X +‖(ω̃1, θ̃)‖X )(‖ω1 − ω̃1‖X +‖θ− θ̃‖X )

for j = 1,2. This is done in an identical manner as in the proof of Lemma 8. It remains to deal

with the integral term
∫t

0 e−(t−s)|∇|α∂1θ d s, for which we have

‖

∫t

0
e−(t−s)|∇|α∂1(θ−θ̃) d s‖L1∩L∞ ≤C

∫t

0

1

(τ− s)
1
α

‖θ−θ̃‖L1∩L∞d s ≤C T 1− 1
α sup

0<s<T
‖θ(s)−θ̃(s)‖L1∩L∞ ,

for 0 < t < T . All in all, we can guarantee that with an appropriate choice of T , the non-linear

map given by (5.1)has a fixed point ω,θ in the space X .
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Regarding the global well-posedness, we can continue the solution, as long as the norm t →

‖θ(t , ·)‖Lp stay under control. First, for 1 < p < ∞, take dot product of the θ equation with

|θ|p−2θ, p ∈ (1,∞) and using the fact the positivity estimate (2.6), we obtain

1

p
∂t‖θ(t , ·))‖

p

Lp ≤
1

p
∂t‖θ‖

p

Lp +

∫

R2
|θ|p−2θ · |∇|αθd x = 0

It follows that t →‖θ(t , ·)‖Lp is non-increasing in any interval (0, t ), whence the solution is global

and ‖θ(t , ·)‖Lp ≤ ‖θ0‖Lp . For p = 1, p = ∞, we use approximation arguments to establish the

same result.

Finally, we use this information to establish the global well-posedness of the u equation in

(1.6). Taking dot product with u, we obtain

1

2
∂t‖u(t , ·)‖2

L2 ≤
1

2
∂t‖u(t , ·)‖2

L2 +‖|∇|
α
2 u‖2

L2 = 〈u2,θ〉 ≤ ‖u2‖L2‖θ(t )‖L2 ≤ ‖u2(t )‖L2‖θ0‖L2

It follows that

‖u(t , ·)‖L2 ≤ ‖u0‖L2 + t‖θ0‖L2 ,

which provides the necessary bound to conclude global regularity, as stated. �

The next Lemma provides a global existence and uniqueness result for the (ω,θ) system.

Lemma 13. Let α > 1. Then, assuming ω0 ∈ L2,θ0 ∈ H
α
2 , the Cauchy problem (1.7) has unique

global solutions. In addition, for any T > 0, there exists C = CT,‖ω0‖L2 ,‖θ0‖
H

α
2
> 0, so that the

solutions satisfy

sup
0≤t≤T

‖ω‖L2 + sup
0≤t≤T

‖|∇|
α
2 θ‖L2 ≤ C .(5.2)

Remark: The constant CT obtained in this argument is exponential in T , which is very non-

efficient. On the other hand, it is sufficient for our purposes in bootstrapping the solution.

Proof. The global regularity for (1.7) is of course very similar to the global regularity established

in Lemma 12. For the energy estimates, needed for (5.2), we can dot product the first equation

in (1.7) with ω and the second one with |∇|αθ to get the following energy estimate

1

2

d

d t

(
‖ω‖2

L2 +‖|∇|
α
2 θ‖2

L2

)
+‖|∇|

α
2 ω‖2

L2 +‖|∇|
αθ‖2

L2 ≤

∣∣∣
∫

ω ·∂1θdξ
∣∣∣+

∣∣∣〈[|∇|
α
2 ,u ·∇]θ, |∇|

α
2 θ〉

∣∣∣
:= I1 + I2.

Then for some 0 < γ< 1,

I1 =

∣∣∣
∫

ω ·∂1θdξ
∣∣∣ ≤ ‖|∇|

α
2 ω‖L2‖∂1|∇|

−
α
2 θ‖L2 ≤ ǫ‖|∇|

α
2 ω‖2

L2 +Cǫ‖∂1|∇|
−

α
2 θ‖2

L2

≤ ǫ‖|∇|
α
2 ω‖2

L2 +Cǫ‖|∇|
αθ‖

2γ

L2‖θ‖
2(1−γ)

L2 ≤ ǫ‖|∇|
α
2 ω‖2

L2 +ǫ‖|∇|αθ‖2
L2 +Cǫ‖θ0‖

2
L2 .

We also have

I2 =

∣∣∣〈[|∇|
α
2 ,u ·∇]θ, |∇|

α
2 θ〉

∣∣∣ ≤ ‖|∇|
−

α
2 [|∇|

α
2 ,u ·∇]θ‖L2‖|∇|

αθ‖L2

We can make use of the inequality (2.12) with a = 1, s1 = s2 =
α
2

, p = 2, q = 8
4−α

and r = 8
α

to get

‖|∇|
−

α
2 [|∇|

α
2 ,u ·∇]θ(t )‖L2 ≤ C‖θ‖

L
8
α
‖∇u‖

L
8

4−α
≤C‖θ0‖

L
8
α
‖ω‖

L
8

4−α
≤C‖θ0‖

L
8
α
‖|∇|

α
4 ω‖L2

≤ C‖θ0‖
L

8
α
‖|∇|

α
2 ω‖

1
2

L2‖ω‖
1
2

L2 .
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where we have used the Sobolev embedding and the Gagliardo-Nirenberg’s inequality. Then,

I2 ≤ ǫ‖|∇|
α
2 ω‖2

L2 +ǫ‖|∇|αθ‖2
L2 +Cǫ(‖θ0‖

L
8
α
‖ω‖

1
2

L2)4.

Therefore, for ǫ< 1
2

, we can hide the terms ‖|∇|
α
2 ω‖2

L2 and ‖|∇|αθ‖2
L2 and we obtain

d

d t

(
‖ω‖2

L2 +‖|∇|
α
2 θ‖2

L2

)
≤C‖θ0‖

4

L
8
α

(
‖ω‖2

L2 +‖|∇|
α
2 θ‖2

L2

)
+C‖θ0‖

2
L2 .

We use Gronwall’s to conclude (5.2).

�

5.2. Some a priori estimates for the scaled vorticity Boussinesq problem (W ,Θ) in Lp . We

now turn our attention to the scaled vorticity system. By the results of Lemma 13 and Lemma

14, such solutions exist globally, by virtue of the change of variables. Now that we have a global

solution, together with the global estimate (5.6), we can actually obtain global a priori estimates

for Θ in all Lp spaces.

Lemma 14. Let p ≥ 1, andΘ0 ∈ L1∩L∞(R2)∩Hα(R2), W0 ∈ L2. Then for any τ> 0, Θ ∈C 0([0,τ];Lp ),

there exists C =Cα,p such that

(5.3) ‖Θ(τ, ·)‖Lp ≤Cα,p‖Θ0‖Lp (R2)e
(2− 1

α−
2
αp )τ

.

Proof. We take a dot product of the Θ equation in (1.13)with |Θ|p−2
Θ, p ≥ 1. We obtain

1

p
∂τ‖Θ‖

p

Lp +

∫

R2
|∇|

α
Θ|Θ|

p−2
Θdξ= (2−

1

α
−

2

αp
)‖Θ‖

p

Lp .

Recall however that
∫

R2 |∇|
α
Θ|Θ|p−2

Θdξ ≥ 0, by Lemma 1. Thus, integrating this inequality

yields (5.3). �

Lemma 14 provides us with a decay rate for Θ(τ, ·) for 1 ≤ p < 2
2α−1

, but clearly an increasing

exponential bound for p ≥ 2
2α−1

. However, we can use it to get a decay rate for any p ≥ 1.

Lemma 15. Let p ≥ 1, andΘ0 ∈ L1∩L∞(R2)∩Hα(R2), W0 ∈ L2. Then for any τ> 0, Θ ∈C 0([0,τ];Lp ),

there exists C =Cα,p such that

(5.4) ‖Θ(τ, ·)‖Lp ≤Cα,p‖Θ0‖Lp (R2)e
(2− 3

α )τ.

Proof. Similar to Lemma 10, we have the following energy estimate

1

p
∂τ‖Θ‖

p

Lp +cp,α‖Θ‖
p

L
2p

2−α

≤ (2−
1

α
−

2

αp
)‖Θ‖

p

Lp .

In other words

∂τ‖Θ‖
p

Lp + pcp,α‖Θ‖
p

L
2p

2−α

≤ p(2−
1

α
−

2

αp
)‖Θ‖

p

Lp ≤ (2−
1

α
−

2

αp
)‖Θ‖

γp

L
2p

2−α

‖Θ‖
(1−γ)p

L1

≤
[p(2− 1

α − 2
αp

)]
1

1−γ

ǫ
γ

1−γ

‖Θ‖
γp

L
2p

2−α

‖Θ‖
(1−γ)p

L1 ≤ p(2−
1

α
−

2

αp
)‖Θ‖

p

L1 +ǫ‖Θ‖
p

L
2p

2−α

.

Now we use (5.3) with p = 1 to get the following energy estimate

∂τ‖Θ‖
p

Lp + (pcp,α−ǫ)‖Θ‖
p

L
2p

2−α

≤ p(2−
1

α
−

2

αp
)‖Θ‖

p

L1 ≤ p(2−
1

α
−

2

αp
)ep(2− 3

α )τ.

Finally, we use Gronwall’s inequality to finish the proof. �
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We can use above Lemma to find some decay rate for U (τ, ·). We need this to be able to get

some bounds for W in higher Lp spaces.

Lemma 16. Let U0 ∈ L2(R2). There exists C =Cα,p , such that for any τ> 0, U ∈C 0([0,τ];L2) and

(5.5) ‖U (τ, ·)‖L2 ≤Cα,p‖U0‖L2(R2)e
(2− 3

α )τ.

Proof. If we dot product the equation (1.14) with U we get the following relation

1

2
∂τ‖U‖

2
L2 +‖|∇|

α
2 U‖

2
L2 =

1

α

∫
(ξ ·∇U )Udξ+ (1−

1

α
)‖U‖

2
L2 +

∫
θ ·Udξ.

Then

∂τ‖U‖
2
L2 +2‖|∇|

α
2 U‖

2
L2 = 2(1−

2

α
)‖U‖

2
L2 +

∫
θ ·Udξ≤ 2(1−

2

α
)‖U‖

2
L2 +‖Θ‖L2‖U‖L2

≤ 2(1−
2

α
+ǫ)‖U‖

2
L2 +Cǫ‖Θ‖

2
L2 ≤ 2(1−

2

α
+ǫ)‖U‖

2
L2 +Cǫe2(2− 3

α )τ.

We finish the proof by the Gronwall’s inequality. �

The next lemma provides a priori estimates for W and Θ in L2 spaces, which allows us to

conclude global regularity.

Lemma 17. Let α ∈ (1, 3
2

), W0 ∈ L2. Then the solution W of (1.13), satisfies

‖W (τ, ·)‖L2 +‖Θ(τ, ·)‖L2 ≤C e (2− 3
α )τ,(5.6)

sup
0≤τ<∞

∫τ

0

(
‖|∇|

α
2 W (s)‖2

L2 +‖|∇|
α
2 Θ(s)‖2

L2

)
d s ≤C(5.7)

for some C =C (‖W0‖L2 ,‖Θ0‖L2 ,α), independent on τ.

Proof. We dot product the first equation in (1.13) with W , and the second equation with Θ.

We also use the trick from Lemma 10 - we add the term A(‖W ‖2
L2 +‖Θ‖2

L2 ), where A is a large

constant to be determined. Then

1

2

d

d t

(
‖W ‖

2
L2 +‖Θ‖

2
L2

)
+ A(‖W ‖

2
L2 +‖Θ‖

2
L2 )+‖|∇|

α
2 W ‖

2
L2 +‖|∇|

α
2 Θ‖

2
L2

≤
∣∣
∫

∂1ΘW dξ
∣∣+ (A+1−

1

α
)‖W ‖

2
L2 + (A+2−

2

α
)‖Θ‖

2
L2 .

But by Gagliardo-Nirenberg (and taking into account that 1− α
2
< α

2
) and Young’s inequalities,

∣∣
∫

∂1ΘW dξ
∣∣ ≤ ‖|∇|

1−α
2 Θ‖L2‖|∇|

α
2 W ‖L2 ≤ ǫ‖|∇|

α
2 Θ‖

2
L2 +ǫ‖|∇|

α
2 W ‖

2
L2 +Cǫ‖Θ‖

2
L2

≤ ǫ‖|∇|
α
2 Θ‖

2
L2 +ǫ‖|∇|

α
2 W ‖

2
L2 +Cǫe2(2− 3

α )τ.

where we have used the estimate for ‖Θ‖L2 from (5.3), with p = 2. We also have

(A+1−
1

α
)‖W ‖

2
L2 ≤ C (A+1−

1

α
)‖∇U‖

2
L2 ≤C (A+1−

1

α
)‖U‖

2γ

L2‖|∇|
1+α

2 U‖
2(1−γ)

L2

≤ C (A+1−
1

α
)‖U‖

2γ

L2‖|∇|
α
2 W ‖

2(1−γ)

L2 ≤ ǫ‖|∇|
α
2 W ‖

2
L2 +

[C (A+1− 1
α )]

1
1−γ

ǫ
γ

1−γ

‖U‖
2
L2

≤ ǫ‖|∇|
α
2 W ‖

2
L2 +

[C (A+1− 1
α )]

1
1−γ

ǫ
γ

1−γ

e2(2− 3
α )τ.
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Considering the estimate for ‖Θ‖L2 from (5.3)(with p = 2)

d

d t

(
‖W ‖

2
L2 +‖Θ‖

2
L2

)
+ 2A(‖W ‖

2
L2 +‖Θ‖

2
L2 )+2(1−2ǫ)‖|∇|

α
2 W ‖

2
L2 +2(1−2ǫ)‖|∇|

α
2 Θ‖

2
L2

≤
2[C (A+1− 1

α )]
1

1−γ

ǫ
γ

1−γ

e2(2− 3
α )τ.

We choose A = 2( 3
α−2) (recall α< 3

2
). Then the last relation has two consequences. First we can

drop the term 2(1−2ǫ)‖|∇|
α
2 W ‖2

L2 +2(1−2ǫ)‖|∇|
α
2 Θ‖2

L2 , so

d

d t

(
‖W ‖

2
L2 +‖Θ‖

2
L2

)
+4(

3

α
−2)(‖W ‖

2
L2 +‖Θ‖

2
L2 ) ≤

[C ( 5
α
−3)]

1
1−γ

ǫ
γ

1−γ

e2(2− 3
α )τ.

and then use the Gronwall’s inequality for the following inequality and get the decay rate (5.6).

The second consequence is that we get
∫τ

0
(‖|∇|

α
2 W (t )‖2

L2 +‖|∇|
α
2 Θ(t )‖2

L2 )d t ≤
(
‖W0‖

2
L2 +‖Θ0‖

2
L2

)
+

Cǫ

2( 3
α −2)

.

This implies (5.7). �

We shall need some a priori estimates for ‖W ‖Lp for some p > 2, as these will be necessary in

our subsequent considerations. This turns out to be non-trivial. It turns out that it is easier to

control ‖W ‖H1 ,‖Θ‖H1 and then use Sobolev embedding to control ‖W ‖Lp ,‖Θ‖Lp ,1 < p <∞. In

this way, we get the control needed, but we end up needing to require smoother H1 initial data.

Proposition 5. W0,Θ0 ∈ H1. Then, the global solution satisfies W ,Θ ∈ C 0([0,τ]; H1(R2)). More-

over,

‖W (τ)‖H1 +‖Θ(τ)‖H1 ≤C e (2− 3
α )τ.(5.8)

C =C (‖W0‖H1 ,‖Θ0‖H1 ,α), independent on τ.

Proof. Local well-posedness in the space H1, for the original (unscaled) equations works as in

Lemma 13, so we omit it. Thus, we have local solutions for the scaled system as well. We now

need to establish a priori estimates to show that these are global.

We differentiate each of the equations in (1.13). Then, we dot product it with9 ∂W and ∂Θ

respectively. We add the two resulting equations to obtain the following energy inequality

1

2

d

d t

(
‖∂W ‖

2
L2 +‖∂Θ‖

2
L2

)
+‖|∇|

α
2 +1W ‖

2
L2 +‖|∇|

α
2 +1

Θ‖
2
L2 ≤

≤
∣∣
∫

∂1∂Θ∂W dξ
∣∣+ (1−

1

α
)‖∂W ‖

2
L2 +2(1−

1

α
)‖∂Θ‖

2
L2 +|〈∂U∇W ,∂W 〉|+ |〈∂U∇Θ,∂Θ〉|.

By Gagliardo-Nirenbergs’ and Young’s

‖∂W ‖
2
L2 +‖∂Θ‖

2
L2 ≤ ǫ(‖∇|

α
2 +1W ‖

2
L2 +‖∇|

α
2 +1

Θ‖
2
L2 )+Cǫ(‖W ‖

2
L2 +‖Θ‖

2
L2 )

Next,

∣∣
∫

∂1∂Θ∂W dξ
∣∣≤C‖|∇|

α
2 +1

Θ‖L2‖|∇|
2−α

2 W ‖L2 ≤ ǫ(‖∇|
α
2 +1W ‖

2
L2 +‖∇|

α
2 +1

Θ‖
2
L2)+Cǫ‖W ‖

2
L2 ,

9Here ∂ means either ∂1 or ∂2



SHARP TIME DECAY RATES FOR SQG AND BOUSSINESQ 25

where in the last estimate we have used that 2− α
2
< 1+ α

2
. Finally,

|〈∂U ·∇W ,∂W 〉| = |〈∇ · (∂UW ),∂W 〉| ≤C‖∇|
α
2 +1W ‖L2‖|∇|

1−α
2 (∂U W )‖L2

≤ ǫ‖∇|
α
2 +1W ‖

2
L2 +Cǫ‖|∇|

1−α
2 (∂U W )‖2

L2

By product estimates, (4) and Sobolev embedding

‖|∇|
1−α

2 (∂U W )‖L2 ≤C (‖|∇|1−
α
2 ∂U‖

L
8

4−α
‖W ‖

L
8
α
+‖|∇|

1−α
2 W ‖

L
8

4−α
‖∂U‖

L
8
α

)

≤ C‖|∇|
1−α

4 ∂U‖L2‖|∇|
1−α

4 W ‖L2 ≤C‖|∇|
1−α

4 W ‖
2
L2 ≤ ‖|∇|

1+α
2 W ‖

2−α
2

1+α
2

L2 ‖W ‖

3α
2

1+α
2

L2 ,

where we have used ∂U ∼ W (in all Sobolev spaces) and Gagliardo-Nirenberg’s. This allows us

to estimate by Young’s

|〈∂U ·∇W ,∂W 〉| ≤ 2ǫ‖∇|
α
2 +1W ‖

2
L2 +Cǫ‖W ‖

3α
α−1

L2 .

Clearly, the appropriate estimate, obtained in the same way holds for

|〈∂U∇Θ,∂Θ〉| ≤ 2ǫ‖∇|3
α
2 +1

Θ‖
2
L2 +Cǫ‖W ‖

α
α−1

L2 .

All in all, we obtain

1

2

d

d t

(
‖∂W ‖

2
L2 +‖∂Θ‖

2
L2

)
+ (1−6ǫ)(‖|∇|

α
2 +1W ‖

2
L2 +‖|∇|

α
2 +1

Θ‖
2
L2 ) ≤Cǫ(‖W ‖

3α
α−1

L2 +‖W ‖
2
L2 +‖Θ‖

2
L2 ).

Set ǫ= 1
10

. For every A > 0, there is cα,A, so that ‖|∇|
α
2 +1W ‖2

L2 ≥ A‖∂W ‖2
L2−cA,α‖W ‖2

L2 and similar

for Θ, so we end up with

d

d t

(
‖∂W ‖

2
L2 +‖∂Θ‖

2
L2

)
+ A

(
‖∂W ‖

2
L2 +‖∂Θ‖

2
L2

)
≤C A,αe2(2− 3

α )τ.

where we have used the exponential bounds from (5.6). Setting sufficiently large A, namely

A = 2( 3
α
−2), and applying Gronwall’s yields the result. �

As an immediate corollary, we have control of the Lp norms for W .

Corollary 1. Let W0,Θ0 ∈ H1. Then, for all p ∈ (2,∞), there is the bound

(5.9) ‖W (τ, ·)‖Lp ≤C (‖W0‖H1 ,‖Θ0‖H1 ,α, p)e (2− 3
α )τ.

5.3. Global regularity for the scaled vorticity Boussinesq problem (W ,Θ) in L2(2)∩ L∞(R2).

The next Lemma is a local well-posedness result, which is a companion to Theorem 3.

Lemma 18. Suppose that W0,Θ0 ∈ L2(2)∩L∞. Then, there exists time T = T (‖(W0,Θ0)‖L2(2)∩L∞),

so that the system of equation (1.13) has unique local solution W ,Θ ∈C 0([0,T ];L2(2)∩L∞) with

W (0)=W0 and Θ(0) =Θ0.

Proof. We are looking for strong solutions in the space X = L2(2)∩L∞, that is a solutions of the

following system of integral equations

W (τ) = eτL W0 −

∫τ

0
e (τ−s)L

∇(U ·W )d s +

∫τ

0
e (τ−s)L (∂1Θ)d s,

Θ(τ) = eτ(L+1− 1
α )
Θ0 −

∫τ

0
e (τ−s)(L+1− 1

α )
∇(U ·Θ)d s

For the free solutions, according to (3.15) and (3.8),

‖eτL W0‖L2(2)∩L∞ +‖eτ(L+1− 1
α )
Θ0‖L2(2)∩L∞ ≤ C eτ(‖W0‖L2(2)∩L∞ +‖Θ0‖L2(2)∩L∞).
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For 0 < T < 1, to be determined, introduce the space

YT := {(W ,Θ) : sup
0≤τ≤T

[‖W (τ, ·)‖X +‖Θ(τ, ·)‖X ] ≤ 2C e(‖W0‖L2(2)∩L∞ +‖Θ0‖L2(2)∩L∞).}.

According to (3.10) and (3.15),

‖

∫τ

0
e (τ−s)L

∇(U ·W )d s‖L2(2)∩L∞ ≤

∫τ

0

e−
(τ−s)
α (e (1− 2

α )(τ−s) +eτ−s)

a(τ− s)
1
α

‖U ·W ‖L2(2)∩L∞ d s

≤ C sup
0≤τ≤T

‖UW ‖L2(2)∩L∞

∫τ

0

1

|τ− s|
1
α

d s ≤C T 1− 1
α sup

0≤τ≤T
‖U‖L∞ sup

0≤τ≤T
‖W ‖L2(2)∩L∞ .

and similarly

‖

∫τ

0
e (τ−s)(L+1− 1

α )
∇(U ·Θ)d s‖L2(2)∩L∞ ≤C T 1− 1

α sup
0≤τ≤T

‖U‖L∞ sup
0≤τ≤T

‖Θ‖L2(2)∩L∞ .

Recalling that U = (∇⊥)−1W , we further estimate by (2.2),

‖U‖L∞ ≤C (‖W ‖L2+ǫ +‖W ‖L2−ǫ) ≤C‖W ‖L2(2)∩L∞ ,

since L2(2) ,→ L2−ǫ and L2(2)∩L∞
,→ L1 ∩L∞

,→ L2+ǫ. Finally,

‖

∫τ

0
e (τ−s)L (∂1Θ)d s‖L2(2)∩L∞ ≤C T 1− 1

α sup
0≤τ≤T

‖Θ‖L2(2)∩L∞ .

Clearly, appropriate estimate hold for the differences, whence the integral equations provide a

contraction mapping in the space YT , provided, T 1− 1
α << 1

2Ce(‖W0‖L2(2)∩L∞+‖Θ0‖L2(2)∩L∞ )
. �

Our next result provides a global regularity for the W ,Θ system in the space L2(2).

Lemma 19. The system of equations (1.7), with W0,Θ0 ∈ X = L2(2)∩L∞, and also W0,Θ0 ∈ H1(R2)

has an unique global solution, in space X . There exists C =C (‖W0‖X ,‖Θ‖X ) such that

sup
0≤τ<∞

‖W (τ, ·)‖L2(2) +‖Θ(τ, ·)‖L2(2) ≤C .(5.10)

Remark: The decay rate by a constant is very inefficient. One could improve the argument

below, at a considerable technical price, to obtain better decay estimates. Since the results in

Section 7 will supersede these anyway, we choose to present the simpler arguments.

Proof. The existence of a local solutions are guaranteed by Lemma 18. So, it remains to establish

energy estimates, which keep the relevant L2(2) norms under control. Note that the unweighted

portion of the norm has an exponential decay, by (5.3)and (5.6). So, it remains to control the

weighted norms.

We run a preliminary argument only on the Θ variable. As usual, this is easier, due to the lack

of problematic term ∂1Θ, which appears in the equation for W . We dot product the Θ equation

in (1.13) with |ξ|4Θ. We have

1

2

d

dτ

∫
|ξ|4Θ2dξ+

∫
|ξ|4|∇|αΘ ·Θdξ+ (

4

α
−2)

∫
|ξ|4Θ2dξ=−

∫
(U ·∇ξΘ)|ξ|4Θdξ.

Then

−

∫
(U ·∇ξΘ)|ξ|4Θdξ = 2

∫
|ξ|2(ξ ·U )Θ2dξ.
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But ∣∣∣
∫

|ξ|2(ξ ·U )Θ2dξ
∣∣∣≤C

∫
|ξ|3‖U‖L∞|Θ|

2dξ≤ ǫ

∫
|ξ|4|Θ|

2dξ+Cǫ−3
‖U‖

4
L∞‖Θ‖

2
L2 .

Now, according to (2.1), for every δ> 0

‖U‖L∞ ≤Cδ(‖W ‖L2+δ +‖W ‖L2−δ) ≤ Cδ(e (2− 3
α )τ

+‖W ‖
2−2δ
2−δ

L2 ‖W ‖
δ

2−δ

L1 )

≤ Cδ+Cδ‖W ‖
δ

2−δ

L2(2)
.

We also have∫
|ξ|4Θ|∇|

α
Θdξ= 〈|ξ|2|∇|

α
2 |∇|

α
2 Θ, |ξ|2Θ〉 =

= 〈|∇|
α
2 [|ξ|2|∇|

α
2 Θ], |ξ|2Θ〉−〈[|∇|

α
2 , |ξ|2] [|∇|

α
2 Θ], |ξ|2Θ〉 =

= 〈|ξ|2|∇|
α
2 Θ, |ξ|2|∇|

α
2 Θ〉+〈|ξ|2|∇|

α
2 Θ, [|∇|

α
2 , |ξ|2]Θ〉−〈[|∇|

α
2 , |ξ|2] [|∇|

α
2 Θ], |ξ|2Θ〉

=

∫
|ξ|4||∇|

α
2 Θ|

2dξ+〈|ξ|2|∇|
α
2 Θ, [|∇|

α
2 , |ξ|2]Θ〉−〈[|∇|

α
2 , |ξ|2] [|∇|

α
2 Θ], |ξ|2Θ〉

Now if we define I (τ)=
∫
|ξ|4Θ2dξ, and put all above together we have the following relation

1

2
I ′(τ)+

(
4

α
−2−10ǫ

)
I (τ)+

∫
|ξ|4||∇|

α
2 Θ|

2dξ

≤ |〈|ξ|2|∇|
α
2 Θ, [|∇|

α
2 , |ξ|2]Θ〉|+ |〈[|∇|

α
2 , |ξ|2][|∇|

α
2 Θ], |ξ|2Θ〉|+Cδ,ǫ‖W (τ, ·)‖

4δ
2−δ

L2(2)
.

We can use Lemma 11 to get

|〈|ξ|2|∇|
α
2 Θ, [|∇|

α
2 , |ξ|2]Θ〉| ≤ ‖|ξ|2|∇|

α
2 Θ‖L2‖[|∇|

α
2 , |ξ|2]Θ‖L2

≤ ‖|ξ|2|∇|
α
2 Θ‖L2‖|ξ|2−

α
2 Θ‖L2 ≤ ‖|ξ|2|∇|

α
2 Θ‖L2‖|ξ|2Θ‖

1−α
4

L2 ‖Θ‖
α
4

L2

≤ ǫ(‖|ξ|2|∇|
α
2 Θ‖

2
L2 +‖|ξ|2Θ‖

2
L2 )+Cǫ.

For the other term we have

|〈[|∇|
α
2 , |ξ|2][|∇|

α
2 Θ], |ξ|2Θ〉| ≤ ‖|ξ|2Θ‖L2‖[|∇|

α
2 , |ξ|2][|∇|

α
2 Θ]‖L2

≤ ‖|ξ|2Θ‖L2‖|ξ|2−
α
2 [|∇|

α
2 Θ]‖L2 ≤ ‖|ξ|2Θ‖L2‖|ξ|2|∇|

α
2 Θ‖

1−α
4

L2 ‖|∇|
α
2 Θ‖

α
4

L2

≤ ǫ(‖|ξ|2|∇|
α
2 Θ‖

2
L2 +‖|ξ|2Θ‖

2
L2 )+Cǫ‖|∇|

α
2 Θ‖

2
L2 .

It follows that

1

2
I ′(τ)+

(
4

α
−2−20ǫ

)
I (τ)+ (1−5ǫ)

∫
|ξ|4||∇|

α
2 Θ|

2dξ≤Cǫ+Cδ,ǫ‖W (τ, ·)‖
4δ

2−δ

L2(2)
+Cǫ‖|∇|

α
2 Θ‖

2
L2 .

Choose ǫ= 1
200

, apply Gronwall’s and then (5.7) implies that for every δ> 0, there is Cδ, so that

(5.11) ‖|ξ|2Θ(τ, ·)‖L2 ≤Cǫ+Cδe−( 4
α−2−δ)τ

+Cδ sup
0<s<τ

‖W (s, ·)‖
2δ

2−δ

L2(2)
.

for every δ> 0. In addition, we obtain the L2
τ bound

(5.12)

∫τ

0
‖|ξ|2|∇|

α
2 Θ(τ, ·)‖2

L2 dτ≤C +Cδ sup
0<s<τ

‖W (s, ·)‖
4δ

2−δ

L2(2)
.
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We are now ready for the bounds for W , which are always harder. If we dot product in (1.13),

the first equation with |ξ|4W , we have the energy equality

1

2

d

dτ

∫
|ξ|4W 2dξ+

∫
|ξ|4|∇|αW ·W dξ+ (

3

α
−1)

∫
|ξ|4W 2dξ

= −

∫
(U ·∇ξW )|ξ|4W dξ+

∫
∂1Θ |ξ|4W dξ

Then −
∫

(U ·∇ξW )|ξ|4W dξ= 2
∫
|ξ|2(ξ ·U )W 2dξ. We can bound this term as follows

∣∣∣
∫

|ξ|2(ξ ·U )W 2dξ
∣∣∣ ≤ C

∫
|ξ|3‖U‖L∞|W |

2dξ≤ ǫ

∫
|ξ|4|W |

2dξ+Cǫ−3
‖U‖

4
L∞‖W ‖

2
L2 .

Again, according to (2.1), for every δ> 0

‖U‖L∞ ≤Cδ(‖W ‖L2+δ +‖W ‖L2−δ) ≤C (e (2− 3
α )τ

+‖W ‖
2−2δ
2−δ

L2 ‖W ‖
δ

2−δ

L1 ).

Taking into account (5.3), (5.9), L2(2) ,→ L1 and Young’s inequality, allows us to estimate
∣∣∣
∫

|ξ|2(ξ ·U )W 2dξ
∣∣∣≤ 2ǫ

∫
|ξ|4|W |

2dξ+Cǫ,δ‖W (τ, ·)‖
4δ

2−δ

L2(2)
.

We also have, similar to the Θ variable calculation,∫
|ξ|4W |∇|

αW dξ= ‖|ξ|2||∇|
α
2 W ‖

2
L2 +〈|ξ|2|∇|

α
2 W , [|∇|

α
2 , |ξ|2]W 〉−〈[|∇|

α
2 , |ξ|2][|∇|

α
2 W ], |ξ|2W 〉

Now if we take J (τ) =
∫
|ξ|4W 2dξ, and put all above together we have the following relation

1

2
J ′(τ)+

(
3

α
−1−10ǫ

)
J (τ)+

∫
|ξ|4||∇|

α
2 W |

2dξ

≤ |〈|ξ|2|∇|
α
2 W , [|∇|

α
2 , |ξ|2]W 〉|+ |〈[|∇|

α
2 , |ξ|2][|∇|

α
2 W ], |ξ|2W 〉|+

∣∣∣
∫

|ξ|4(∂1Θ)W dξ
∣∣∣+

+ Cǫ+Cǫ,δ‖W (τ, ·)‖
4δ

2−δ

L2(2)
= I1 + I2 + I3 +Cǫ+Cǫ,δ‖W (τ, ·)‖

4δ
2−δ

L2(2)

We can use Lemma 11 to get

I1 = |〈|ξ|2|∇|
α
2 W , [|∇|

α
2 , |ξ|2]W 〉| ≤ ‖|ξ|2|∇|

α
2 W ‖L2‖|[|∇|

α
2 , |ξ|2]W ‖L2

≤ ‖|ξ|2|∇|
α
2 W ‖L2‖|ξ|2−

α
2 W ‖L2 ≤ ‖|ξ|2|∇|

α
2 W ‖L2‖|ξ|2W ‖

1−α
4

L2 ‖W ‖
α
4

L2

≤ ǫ(‖|ξ|2|∇|
α
2 W ‖

2
L2 +‖|ξ|2W ‖

2
L2)+Cǫ,

where we have used the bounds (5.6) for ‖W ‖L2 . Next, regarding I2, we have

I2 = |〈[|∇|
α
2 , |ξ|2][|∇|

α
2 W ], |ξ|2W 〉| ≤ ‖|ξ|2W ‖L2‖[|∇|

α
2 , |ξ|2][|∇|

α
2 W ]‖L2

≤ ‖|ξ|2W ‖L2‖|ξ|2−
α
2 |∇|

α
2 W ‖L2 ≤ ‖|ξ|2W ‖L2‖|ξ|2|∇|

α
2 W ‖

1−α
4

L2 ‖|∇|
α
2 W ‖

α
4

L2

≤ ǫ(‖|ξ|2W ‖
2
L2 +‖|ξ|2|∇|

α
2 W ‖

2
L2)+Cǫ‖|∇|

α
2 W ‖

2
L2 .

I3 is normally a problematic term, but now we have the decay estimates for ‖Θ‖L2(2), which we

have proved in the first part of this Lemma. We have

I3 =

∣∣∣〈∂1Θ, |ξ|4W 〉

∣∣∣≤
∣∣∣〈|ξ|2∂1Θ, |ξ|2W 〉

∣∣∣≤
∣∣∣〈∂1|∇|

−α
2 |ξ|2|∇|

α
2 Θ, |ξ|2W 〉

∣∣∣

+

∣∣∣〈[∂1|∇|
−α

2 , |ξ|2] [|∇|
α
2 Θ], |ξ|2W 〉

∣∣∣ := I3,1 + I3,2.
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I3,1 is estimated as follows

I3,1 =

∣∣∣〈∂1|∇|
−

α
2 |ξ|2|∇|

α
2 Θ, |ξ|2W 〉

∣∣∣≤C‖|ξ|2|∇|
α
2 Θ‖L2‖|∇|

1−α
2 [|ξ|2W ]‖L2

≤ ‖|ξ|2|∇|
α
2 Θ‖L2‖|ξ|2W ‖

2α−2
α

L2 ‖|∇|
α
2 [|ξ|2W ]‖

2−α
α

L2 ≤Cǫ‖|ξ|
2
|∇|

α
2 Θ‖

2
L2 +

+ ǫ(‖|ξ|2W ‖
2
L2 +‖|∇|

α
2 [|ξ|2W ]‖2

L2)

We bound the last term, by Lemma 11,

‖|∇|
α
2 [|ξ|2W ]‖L2 ≤ ‖|ξ|2|∇|

α
2 W ‖L2 +‖[|∇|

α
2 , |ξ|2]W ‖L2 ≤ ‖|ξ|2|∇|

α
2 W ‖L2 +C‖|ξ|2−

α
2 W ‖L2

≤ ‖|ξ|2|∇|
α
2 W ‖L2 +C (‖W ‖L2 +‖|ξ|2W ‖L2).

Collecting terms together yields the following estimate for I3,1 and using (5.8),

I3,1 ≤ 2ǫ(‖|ξ|2W ‖
2
L2 +‖|ξ|2|∇|

α
2 W ‖

2
L2)+Cǫ‖|ξ|

2
|∇|

α
2 Θ‖

2
L2 +C e2(2− 3

α )τ.

We can easily bound I3,2, provided we know an appropriate estimate for the commutator

[∂1|∇|
−α

2 , |ξ|2]. In fact, this commutator is morally like [|∇|1−
α
2 , |ξ|2], which was indeed consid-

ered in Lemma 11. However, there does not appear to be an easy way to transfer the estimate

(4.8) to it, so we state the relevant estimate here

(5.13) ‖[∂1|∇|
−a , |ξ|2] f ‖L2 ≤C‖|ξ|1+a f ‖L2 , a ∈ (0,1)

The proof of (5.13) is postponed to the Appendix10. Assuming the validity of (5.13), we proceed

to bound I3,2.

I3,2 =

∣∣∣〈[∂1|∇|
−

α
2 , |ξ|2] [|∇|

α
2 Θ], |ξ|2W 〉

∣∣∣≤ ‖|ξ|2W ‖L2‖[∂1|∇|
−

α
2 , |ξ|2] [|∇|

α
2 Θ]‖L2

≤ ‖|ξ|2W ‖L2‖|ξ|1+
α
2 |∇|

α
2 Θ‖L2 ≤ ‖|ξ|2W ‖L2‖|ξ|2|∇|

α
2 Θ‖

2+α
4

L2 ‖|∇|
α
2 Θ‖

2−α
4

L2

≤ ǫ‖|ξ|2W ‖
2
L2 +‖|∇|

α
2 Θ‖

2
L2 +Cǫ‖|ξ|

2
|∇|

α
2 Θ‖

2
L2

≤ ǫ‖|ξ|2W ‖
2
L2 +C +Cδ‖W ‖

4δ
2−δ

L2(2)
+Cǫ‖|ξ|

2
|∇|

α
2 Θ‖

2
L2 ,

where we have made use of (5.12). Combining all the estimates, we obtain the following energy

inequality

1

2
J ′(τ)+

(
3

α
−1−20ǫ

)
J (τ)+ (1−5ǫ)

∫
|ξ|4||∇|

α
2 W |

2dξ

≤ Cǫ+Cδ‖W ‖
4δ

2−δ

L2(2)
+Cǫ(‖|ξ|2|∇|

α
2 Θ‖

2
L2 +‖|∇|

α
2 W ‖

2
L2)

Applying Gronwall’s and taking into account the L2
τ integrability results (5.7) and (5.12), and

‖W ‖2
L2(2)

≤ J (τ)+C , we conclude for every δ> 0

J (τ) ≤ J (0)e−2( 3
α−1−20ǫ)τ

+Cǫτe−2( 3
α−1−20ǫ)τ

+Cδ sup
0<s<τ

J (τ)
2δ

2−δ +

+ Cǫ

∫τ

0
(‖|ξ|2|∇|

α
2 Θ(s, ·)‖2

L2 +‖|∇|
α
2 W (s, ·)‖2

L2)d s ≤Cǫ+Cδ sup
0<s<τ

J (τ)
2δ

2−δ

Selecting small ǫ and solving this inequality for sup0<s<τ J (τ) implies the sup0<s<τ J (τ) ≤ C , for

all times τ. Inputting this last estimate in (5.11) implies the desired bound for ‖Θ‖L2(2) as well.

�

10In fact, it can be reduced to a similar expression as in the proof of (4.8), so we prove them simultaneously.



30 ATANAS STEFANOV AND FAZEL HADADIFRAD

6. GLOBAL DYNAMICS OF THE SOLUTIONS OF THE SQG MODEL

Theorem 3 already provides pretty good estimate about the behavior of the solutions to the

rescaled equation (1.11), in particular the solution Z disperses at ∞, with the rate e−τ(
3−α−β

α ). An

obviously question is whether or not this is optimal, that is whether there is a lower bound with

the same exponential function, at least for generic data. It turns out that this is indeed the case.

In fact, we have a more precise result, namely an asymptotic expansion.

Before we continue with the formal statement of the main result, we need a simple algebraic

observation, which is important in the sequel. Recall the generalized Biot-Savart law that we

imposed, u = uz = (|∇|⊥)−βz. This naturally transformed into the relation U =UZ = (|∇|⊥)−βZ

between the “scaled” velocity U and its vorticity Z . We claim that

(6.1) UG ·∇G = 0.

Indeed, since G is a radial function11, say G(ξ) = ζ(|ξ|), we have that ∇G = (ξ1,ξ2)
ζ′(|ξ|)
|ξ| . On

the other hand, UG = (|∇|⊥)−βG = |∇|⊥m−β−1(|∇|)G , so UG = |∇|⊥h(|ξ|), where h is a radial

function representing [m−β−1(|∇|)G]. That is, h(|ξ|) = [m−β−1(|∇|)G](ξ). It follows that UG =

(−ξ2,ξ1)
h′(|ξ|)
|ξ| . Thus,

UG ·∇G = (−ξ2,ξ1)
h′(|ξ|)

|ξ|
· (ξ1,ξ2)

ζ′(|ξ|)

|ξ|
= 0.

We are now ready to state the main theorem of this section.

Theorem 4. Let Z0 ∈ L2(2)∩L∞(R2), ǫ> 0, α ∈ (1,2),α+β≤ 3. Denote γ(0) :=
∫

R2 Z0(ξ)dξ. Then

there exists Cǫ > 0 such that for any τ> 0,

(6.2) ‖Z (τ, ·)−γ(0)e−τ(
3−α−β

α )G‖L2(2) ≤Cǫe−τ(
4−α−β

α −ǫ).

Assuming in addition that β> 1, we also have

(6.3) ‖∇[Z (τ, ·)−γ(0)e−τ(
3−α−β

α )G]‖L2(2) ≤Cǫe−τ(
4−α−β

α −ǫ).

In particular if
∫

R2 Z0(ξ)dξ= 0, then ‖Z‖L2(2) ≤Cǫe−τ(
4−α−β

α −ǫ).

Remarks:

• We would like to point out that the existence of solution Z (and subsequently γ(τ) and

Z̃ (τ)) is not in question anymore, due to the results obtained in Theorem 3. The purpose

of this theorem is just to obtain better a priori estimates, in the form described in above.

• The requirement β> 1, imposed so that (6.3) holds is likely only a technical one, but we

cannot remove it with our methods.

Proof. (Theorem 4)

According to the results in Section 3.4, λ0 =−
3−α−β

α ≤ 0 is an isolated and simple eigenvalue

for the operator L on L2(2), with eigenfunction G , while the rest of the spectrum is the essential

spectrum, which we have identified before, σess (L ) = {λ : ℜλ ≤ −
4−α−β

α
}. We have also found

the spectral projection P0 f = 〈 f ,1〉G and Q0 = I d −P0. Thus, we can write

(6.4) Z (τ, ·) = γ(τ)G(ξ)+ Z̃ (τ, ·),

11as the Fourier transform of a radial one
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where γ(τ) = 〈Z (τ, ·),1〉 =
∫

R2 Z (τ,ξ)dξ, Z̃ (τ) = Q0Z (τ, ·). Projecting the equation (1.11), with

respect to the spectral decomposition provided by P0 and Q0, we obtain an ODE for γ and a

PDE for Z̃ (τ). More precisely,

∂τγ = 〈L Z ,1〉−〈U ·∇Z ,1〉 = 〈−|∇|
αZ +

1

α
ξ ·∇ξZ +

(
1+

β−1

α

)
Z ,1〉−〈∇(U ·Z ),1〉 =

=
α+β−3

α
γ(τ).

Integrating this first order ODE yields the formula γ(τ) = γ(0)e−τ
3−α−β

α . For the PDE governing

Z̃ (τ), and recalling L0 =LQ0, we obtain

Z̃τ =L0 Z̃ −Q0[U ·∇Z ] =L0 Z̃ −Q0[U ·∇(γ(0)e−τ
3−α−β

α G + Z̃ )].

In its equivalent integral formulation,

(6.5) Z̃ (τ) = eτL0 Z̃ (0)−

∫τ

0
e (τ−s)L0Q0[U ·∇(γ(0) e−τ

3−α−β
α G + Z̃ (s, ·)] d s.

Note the commutation relation Q0∇=∇, whence one can remove Q0 in front of the nonlinear-

ity. By (3.14), we can estimate

‖Z̃ (τ)‖L2(2) ≤ ‖eτL0 Z̃ (0)‖L2(2) +

∫τ

0
‖e (τ−s)L0

(
(UG +UZ̃ )∇· (γ(0) e−s

3−α−β
α G + Z̃ (s)

)
‖L2(2)d s

≤ ‖eτL0 Z̃ (0)‖L2(2) +|γ(0)|

∫τ

0
e−

(τ−s)
α e−s

3−α−β
α ‖∇·e (τ−s)L0 (UZ̃ ·G)‖L2(2)d s +

+

∫τ

0
e−

(τ−s)
α ‖∇·e (τ−s)L (U · Z̃ )‖L2(2)d s =: I1 + I2 + I3,

where we have used (6.1). Clearly by (3.11)

I1 ≤C e
−τ

(
4−β−α

α −ǫ
)
‖Z̃ (0)‖L2(2)

Regarding I2, we have

I2 ≤ |γ(0)|

∫τ

0

e−
(τ−s)
α e−s

3−α−β
α e

−(τ−s)
(

3−β−α
α

)
‖UZ̃ ·G‖L2(2)

a(τ− s)
1
α

d s

Now to bound ‖UZ̃ ·G‖L2(2) we look at two different cases, namely 0 ≤ β < 1 and 1 ≤ β < 2. If

0 ≤β≤ 1, then we can use Lemma 2.9 to get

‖UZ̃ ·G‖L2(2) ≤ ‖UZ̃‖
L

2
1−β

‖(1+|ξ|2)G‖
L

2
β

≤ C‖UZ̃‖
L

2
1−β

≤C‖|∇|
βUZ̃‖L2 ≤C‖Z̃‖L2 ≤ ‖Z̃‖L2(2).

If 1 ≤β< 2, then for some 0< ǫ<< 1 we have

‖UZ̃ ·G‖L2(2) ≤ ‖UZ̃‖L
2
ǫ
‖(1+|ξ|2)G‖

L
2

1−ǫ

≤ C‖UZ̃‖L
2
ǫ
≤C‖|∇|

βUZ̃‖
L

2
β+ǫ

≤C‖Z̃‖
L

2
β+ǫ

≤C‖Z̃‖L2(2).

In the last inequality we used the fact that for 1 < p < 2, Lp
,→ L2(2) and Lemma (2.9). Therefore

I2 ≤C

∫τ

0

e
−(τ−s)

(
4−β−α

α

)
e−s

3−α−β
α

(min(1, |τ− s|)
1
α

‖Z̃ (s)‖L2(2)d s.
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Finally, we make use of (3.15) to get

I3 ≤

∫τ

0

e−
(τ−s)
α e

−(τ−s)
(

3−β−α
α

)
‖U (s)‖L∞‖Z̃ (s)‖L2(2)

a(τ− s)
1
α

d s

≤ C

∫τ

0

e
−(τ−s)

(
4−β−α

α −ǫ
)
e
−s

(
3−β−α

α

)

(min(1, |τ− s|)
1
α

‖Z̃ (s)‖L2(2) d s,

where we have used that a(τ) ∼ min(1,τ), the Sobolev inequality and Theorem 3 to conclude

(6.6) ‖U (s)‖L∞ ≤C (‖Z (s)‖
L

2
β
+ǫ +‖Z (s)‖

L
2
β
−ǫ) ≤C e

−s
(

3−β−α
α

)
.

We are now in a position to use the Gronwal’s inequality, more precisely the version displayed

in Lemma 6. We apply it with I (τ)= ‖Z̃ (τ)‖L2(2), µ=
4−α−β

α −ǫ,σ=
4−α−β

α ,κ=
3−α−β

α and a =
1
α <

1, for ǫ<< 1. Recall that by the a priori estimates in Theorem 3, we have

‖Z̃ (τ)‖L2(2) ≤ ‖Z (τ)‖L2(2) +|γ(0)|e−τ(
3−α−β

α )
‖G‖L2(2) ≤C e−τ(

3−α−β
α )

≤C ,

for all τ> 0, since 3 ≥α+β. Thus, all the requirements of Lemma 6 are met and we obtain the

bound

(6.7) ‖Z̃ (τ)‖L2(2) ≤Cǫe−τ(
4−α−β

α −ǫ).

Regarding the proof of (6.3), we proceed in a similar fashion. We need to control ‖∂Z̃‖L2(2),

for large τ, say τ ≥ 1. Applying ∂ = ∂1,∂2 to the integral equation (6.5) and taking ‖ · ‖L2(2), we

obtain

‖∂Z̃ (τ)‖L2(2) . e−τ(
4−α−β

α −ǫ)
‖Z̃ (0)‖L2(2) +

∫τ

0

e−
(τ−s)
α e−s

3−α−β
α

min(1,τ− s)
1
α

‖e (τ−s)L0∇(UZ̃ ·G)‖L2(2)d s

+

∫τ

0

e−
(τ−s)
α

min(1,τ− s)
1
α

‖e (τ−s)L0∇(U · Z̃ )‖L2(2)d s . e−τ(
4−α−β

α −ǫ)
+

+

∫τ

0

e−s
3−α−β

α e−(τ−s)(
5−α−β

α −ǫ)

min(1,τ− s)
1
α

‖∇[UZ̃ (s)G]‖L2(2)d s +

∫τ

0

e−(τ−s)(
5−α−β

α −ǫ)

min(1,τ− s)
1
α

‖∇[U (s)Z̃ (s)]‖L2(2)d s

We estimate ‖∇[UZ̃ (s)G]‖L2(2) ≤ ‖∇UZ̃ (s)G‖L2(2) +‖UZ̃ (s)∇G‖L2(2). Following the strategy above,

for β≤ 1 and then for β> 1, we arrive at

‖∇[UZ̃ (s)G]‖L2(2) . ‖Z̃ (s)‖L2(2) +‖∂Z̃ (s)‖L2(2) . e−s(
4−α−β

α −ǫ)
+‖∂Z̃ (s)‖L2(2),

where we have used (6.7). For the other term, it is relatively easy to bound ‖∇[U (s)Z̃ (s)]‖L2(2),

when β> 1,

‖∂[U (s)Z̃ (s)]‖L2(2) . ‖∂U (s)‖L∞‖Z̃ (s)‖L2(2) +‖U (s)‖L∞‖∂Z̃ (s)‖L2(2)

. e−s(
3−α−β

α )e−s(
4−α−β

α −ǫ)
+e

−s
(

3−β−α
α

)
‖∂Z̃ (s)‖L2(2).

where we have used (recalling U ∼ |∇|−βZ ), ‖∂U (s)‖L∞ ≤C (‖Z‖
L

2
β−1

+ǫ+‖Z‖
L

2
β−1

−ǫ) ≤C e−s(
3−α−β

α ),

(6.7), (6.6). Plugging it together yields

(6.8) ‖∂Z̃ (τ)‖L2(2) . e−τ(
4−α−β

α −ǫ)
+

∫τ

0

e−(τ−s)(
5−α−β

α −ǫ)e−s(
3−α−β

α )

min(1,τ− s)
1
α

‖∂Z̃ (s)‖L2(2).
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This puts us in a position to use the Gronwal’s Lemma 6. Note that in order to do that, we

need any a priori exponential bound on ‖∂Z (τ)‖L2(2), similar to Theorem 3 for ‖Z (τ)‖L2(2). This

is actually easy to achieve, one just has to differentiate the equation and perform very coarse

energy estimates12. As a result, Lemma 6 applies and we obtain

‖∂Z̃ (τ)‖L2(2) . e−τ(
4−α−β

α −ǫ),

as is the statement of (6.3).

�

It is now easy to conclude the main result, Theorem 1. Realizing that L2(2) ,→ Lp ,1 ≤ p ≤ 2,

one just needs to translate the Lp estimates for Z , in the language of the original variable z.

7. GLOBAL DYNAMICS OF THE SOLUTIONS OF THE BOUSSINESQ MODEL

In this section, we compute the optimal decay rate in L2(2) for the solution of the Boussinesq

model (1.13). Recall that the relevant operator L has the form

L =−|∇|
α
+

1

α
ξ ·∇ξ+1,

with λ0(L ) = 1− 2
α and σess (L ) ⊂ {λ : ℜλ≤ 1− 3

α }.

Theorem 5. Suppose α ∈ (1, 3
2

) and W0,Θ0 ∈ Y := L2(2)(R2)∩L∞(R2)∩ H1(R2). Then for every

δ > 0, there exists C = Cδ(‖W0‖Y ,‖Θ0‖Y ) > 0, such that for any τ > 0, the solutions W ,Θ for the

system of equations (1.13) obey

(7.1) ‖W −γ2(0)e−( 3
α−2)τ∂1G −γ1(0)e−( 2

α−1)τG‖L2(2) +‖Θ−γ2(0)e−( 3
α−2)τG‖L2(2) ≤C e−2( 3

α−2−δ)τ.

where γ1(0) :=
∫

W0(ξ)dξ, and γ2(0) :=
∫
Θ0(ξ)dξ. In particular, if Ŵ0(0) = Θ̂0(0) = 0 then

(7.2) ‖W ‖L2(2) +‖Θ‖L2(2) ≤Cδe−2( 3
α−2−δ)τ.

Proof. Using the spectral decomposition for L , described in Section 3.4, write

W (τ) = γ1(τ)G(ξ)+W̃ (τ)(7.3)

Θ(τ) = γ2(τ)G(ξ)+ Θ̃(τ)(7.4)

where γ1(τ) := 〈W (τ),1〉, γ2(τ) := 〈Θ(τ),1〉, W̃ = Q0W (τ, ·) and Θ̃ = Q0Θ(τ, ·). Then, we derive

the equations for γ1,γ2 as before - namely

∂τγ1 = 〈Wτ,1〉 = 〈L W ,1〉−〈U ·∇W ,1〉+〈∂1Θ,1〉

= 〈L W ,1〉 = 〈W ,L ∗1〉 = (1−
2

α
)〈W ,1〉 = (1−

2

α
) γ1(τ)

Similarly, ∂τγ2 = (2− 3
α ) γ2(τ). Solving the ODE’s results in the formulas

γ1(τ) = γ1(0)e (1− 2
α )τ,γ2(τ) = γ2(0)e (2− 3

α )τ.

12which will give very inefficient exponential bounds on ‖∂Z (τ)‖L2(2), but that is all we need to jump start

Lemma 6
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For the projections over the essential spectrum, we have the following PDE’s

W̃τ = L W̃ −Q0[U ·∇W −∂1Θ] =L W̃ −Q0[U ·∇(γ1(0) e (1− 2
α )τG +W̃ )]+

+ Q0[∂1(γ2(0) e (1− 2
α )τG + Θ̃)],

Θ̃τ = (L +1−
1

α
)Θ̃−Q0[U ·∇Θ] = (L +1−

1

α
)Θ̃−Q0[U ·∇(γ2(0) e (2− 3

α )τG + Θ̃)].

We represent them via the Duhamel’s formula

W̃ (τ) = eτL W̃0 −

∫τ

0
e (τ−s)L

Q0[U ·∇(γ1(0) e (1− 2
α )sG +W̃ (s))] d s +

∫τ

0
e (τ−s)L

Q0[∂1Θ(s)] d s,

Θ̃(τ) = eτ(L+1− 1
α )
Θ̃0 −

∫τ

0
e (τ−s)(L+1− 1

α )
Q0[U ·∇(γ2(0) e (2− 3

α )sG + Θ̃(s))] d s.

One term deserves a special attention, as it is explicit. Note that Q0∂1 = ∂1, since P0∂1 = 0.

Also for κ> 0, since G is an eigenfunction, with eigenvalue 1− 2
α , we have eκL G = e (1− 2

α )κG . By

Lemma 7, ∫τ

0
e (τ−s)L

Q0[∂1Θ(s)] d s =

∫τ

0
e (τ−s)L [∂1[γ2(0) e (2− 3

α )sG + Θ̃(s))]] d s =

= γ2(0)

∫τ

0
e (2− 3

α )s e−
τ−s
α ∂1e (τ−s)L [G]d s +

∫τ

0
e−

τ−s
α ∂1e (τ−s)L

Θ̃(s)d s =

= γ2(0)∂1G

∫τ

0
e (2− 3

α )s e−
τ−s
α e (1− 2

α )(τ−s)d s +

∫τ

0
e−

τ−s
α ∂1e (τ−s)L

Θ̃(s)d s =

= γ2(0)(e (2− 3
α )τ

−e (1− 3
α )τ)∂1G +

∫τ

0
e−

τ−s
α ∂1e (τ−s)L

Θ̃(s)d s.

At this point, it makes more sense to introduce the new variable,

W1(τ,ξ) := W̃ (τ,ξ)−γ2(0)(e (2− 3
α )τ

−e (1− 3
α )τ)∂1G =: W̃ −e (2− 3

α )τG1(τ,ξ).

Note that the decay rate e (2− 3
α )τ along the G1 direction is slower than the decay rate e (1− 2

α )τ of

the evolution along the G direction. Also, G1 is basically ∂1G multiplied by a bounded function

of τ and hence an element of L2(2)∩L∞. For future reference,

(7.5) ‖W1‖X −C e (2− 3
α )τ

≤ ‖W̃ ‖X ≤ ‖W1‖X +C e (2− 3
α )τ.

for all Banach spaces in consideration herein.

We write the equations for W1 and Θ̃ as follows

W1(τ) = eτL W̃0 −

∫τ

0
e (τ−s)L

Q0[U ·∇(γ1(0) e (1− 2
α )sG +e (2− 3

α )sG1 +W1(s))] d s +

+

∫τ

0
e− τ−s

α ∂1e (τ−s)L
Θ̃(s)d s.

Θ̃(τ) = eτ(L+1− 1
α )
Θ̃0 −

∫τ

0
e (τ−s)(L+1− 1

α )
Q0[U ·∇(γ2(0) e (2− 3

α )sG + Θ̃(s))] d s.

Note that U = e (1− 2
α )sUG +e (2− 3

α )sUG1 +UW1 and UG ·G = 0.

We start the estimates for Θ̃

‖Θ̃‖L2(2) ≤ C e (2− 4
α+δ)τ

‖Θ̃(0)‖L2(2) +|γ2(0)|

∫τ

0
e (2− 3

α )s
‖e (τ−s)(L+1− 1

α )
Q0[U ·∇G]‖L2(2) d s +

+

∫τ

0
‖e (τ−s)(L+1− 1

α )
Q0[U ·∇Θ̃(s)]‖L2(2) d s =: C e (2− 4

α+δ)τ
+ J1 + J2
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For all δ> 0 small enough, there is Cδ,

J1 =

∫τ

0
e (2− 3

α )s
‖e (τ−s)(L+1− 1

α )
Q0[U ·∇G]‖L2(2) d s . ‖UG1G‖L2(2)

∫τ

0

e (2− 5
α+δ)(τ−s)e2(2− 3

α )s

(a(τ− s))
1
α

d s +

+

∫τ

0

e (2− 5
α+δ)(τ−s)e (2− 3

α )s

(min(1, |τ− s|)
1
α

‖UW1(s, ·) ·∇G‖L2(2)d s . e2(2− 3
α )τ

+

+

∫τ

0

e (2− 5
α+δ)(τ−s)e (2− 3

α )s

(min(1, |τ− s|)
1
α

(e (2− 3
α )s )1−ǫd s ≤Cδe2(2− 3

α )τ.

where we have used Lemma 2, Gagliardo-Nirenberg’s, (5.6), L2(2) ,→ L1, (5.10), to estimate

‖UW1∇G‖L2(2) ≤ ‖UW1‖L
2
ǫ
‖(1+|ξ|2)|∇G |‖

L
2

1−ǫ
≤C‖UW1‖L

2
ǫ
≤C‖W1‖

L
2

1+ǫ

≤ C‖W1‖
1−ǫ
L2 ‖W1‖

ǫ
L1 ≤C (e (2− 3

α )s )1−ǫ.

Similarly,

J2 =

∫τ

0
‖e (τ−s)(L+1− 1

α )
Q0[U ·∇Θ̃(s)]‖L2(2) d s ≤C

∫τ

0

e (2− 5
α+δ)(τ−s)

(min(1, |τ− s|)
1
α

‖U (s)‖L∞‖Θ̃(s)‖L2(2)d s

Thus, we need a good estimate of ‖U (s)‖L∞ . We have by (2.2)

‖U (s, ·))‖L∞ ≤C (‖W (s, ·)‖L2+ǫ +‖W (s, ·)‖L2−ǫ).

By the a priori estimate (5.9), we have a good control of ‖W (s, ·)‖L2+ǫ , namely ‖W (s, ·)‖L2+ǫ ≤

C e (2− 3
α )s . For ‖W (s, ·)‖L2−ǫ , we can control it by (5.10), but this is not efficient for our arguments

- we need some, however small, decay in s, which we can then input in the Gronwall’s, (2.14).

To achieve that, we proceed by Gagliardo-Nirenberg’s estimate. Taking into account once again

L2(2) ,→ L1, and the bounds (5.6),

‖W (s, ·)‖L2−ǫ ≤ ‖W (s, ·)‖
2−2ǫ
2−ǫ

L2 ‖W (s, ·)‖
ǫ

2−ǫ

L1 ≤C (e (2− 3
α )s )

2−2ǫ
2−ǫ .

All in all, for all δ> 0,

(7.6) ‖U (s, ·)‖L∞ ≤Cδe−( 3
α−2−δ)s .

This results in the following estimates for J2

J2 ≤

∫τ

0

e (2− 5
α+δ)(τ−s)e−( 3

α−2−δ)s

(min(1, |τ− s|)
1
α

‖Θ̃(s)‖L2(2)d s

Combining all the estimates obtained about13 ‖Θ̃(s)‖L2(2), , we have

‖Θ̃(τ)‖L2(2) ≤C e−2( 3
α−2−δ)τ

+

∫τ

0

e (2− 5
α+δ)(τ−s)e−( 3

α−2−δ)s

(min(1, |τ− s|)
1
α

‖Θ̃(s)‖L2(2)d s

Applying the Gronwal’s, more precisely Lemma 6, we conclude

‖Θ̃(τ)‖L2(2) ≤Cδe−( 3
α−2−δ)τ,

13note that with our restrictions on α, ( 3
α − 2) < 4

α − 2, so this is the slowest rate on the right hand sides of

‖Θ̃(τ)‖L2(2).
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as stated. For W1, we get

‖W1‖L2(2) ≤C e−( 3
α−1−δ)τ

‖W̃0‖L2(2) +

+

∫τ

0
e−

(τ−s)
α ‖∇e (τ−s)L0 [U · (γ1(0)e (1− 2

α )sG +e (2− 3
α )sG1)+U ·W1]‖L2(2)d s

+

∫τ

0
e−

(τ−s)
α ‖∂1e (τ−s)L0Θ̃(s)‖L2(2)d s . e (1− 3

α+δ)τ
+

+

∫τ

0

e (1− 3
α+δ)(τ−s)e (2− 3

α )s‖U (|G |+ |G1|)‖L2(2)

(a(τ− s))
1
α

d s +

∫τ

0

e (1− 3
α+δ)(τ−s)‖U‖L∞‖W1‖L2(2)

(a(τ− s))
1
α

d s

+

∫τ

0

e (1− 4
α+δ)(τ−s)‖Θ̃(s)‖L2(2)

(a(τ− s))
1
α

d s = e (1− 3
α+δ)τ

+ I1 + I2 + I3

For I1, we have

‖U (|G |+ |G1|)‖L2(2) ≤ ‖(e (1− 2
α )sUG +e (2− 3

α )sUG1)(|G |+ |G1|)‖L2(2) +‖UW1(|G |+ |G1|)‖L2(2).

The first term is easily estimated, since G ,G1 ∈ L2(2) (whence UG ,UG1 ∈ L∞ by Sobolev embed-

ding and Lemma 2)

‖(e (1− 2
α )sUG +e (2− 3

α )sUG1)(|G |+ |G1|)‖L2(2) ≤C e (2− 3
α )s ,

whence the contribution of these terms is no more than

C

∫τ

0

e (1− 3
α+δ)(τ−s)e2(2− 3

α )s

min(1, |τ− s|)
1
α

d s ≤C e2τ(2− 3
α ).

For UW1 terms, we can use Lemma 2, the Sobolev inequality and L2(2) ,→ L
2

1+ǫ to get

‖UW1(s)(|G |+ |G1|)‖L2(2) = ‖UW1 · (1+|ξ|2)(|G |+ |G1|)‖L2 ≤ ‖UW1‖L
2
ǫ
‖(1+|ξ|2)(|G |+ |G1|)‖

L
2

1−ǫ

≤ C‖UW1‖L
2
ǫ
≤C‖∇UW1‖L

2
1+ǫ

≤C‖W1‖
L

2
1+ǫ

≤C‖W1(s)‖L2(2).

All together, the contribution of I1 is estimated by

I1 ≤C e−2( 3
α−2)τ

+

∫τ

0

e−( 3
α−1−δ)(τ−s)e−( 3

α−2)s

min(1, |τ− s|)
1
α

‖W1(s)‖L2(2)d s

Regarding I2, we first need an appropriate estimate on ‖U‖L∞ , which is fortunately already

given by (7.6). This then gives the bound for I2,

I2 ≤

∫τ

0

e−( 3
α−1−δ)(τ−s)e−( 3

α−2−δ)s

min(1, |τ− s|)
1
α

‖W1(s)‖L2(2)d s

Combining all estimates for ‖W1(τ)‖L2(2) yields

‖W1(τ, ·)‖L2(2) ≤C e−2( 3
α−2)τ

+

∫τ

0

e−( 3
α−1−δ)(τ−s)e−( 3

α−2−δ)s

min(1, |τ− s|)
1
α

‖W1(s)‖L2(2)d s.

Applying Lemma 6, with µ= 2( 3
α −2),σ= ( 3

α −1−δ),κ= ( 3
α −2−δ) yields

‖W1(τ, ·)‖L2(2) ≤C e−2( 3
α−2)τ.

This is the statement of (7.1) and Theorem 5 is proved in full.

�
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APPENDIX A. SOBOLEV EMBEDDING AT L∞: RELATION (2.2)

Before we start the proof of (2.2), we recall the following Bernstein inequality. Let g satisfy

supp ĝ ⊂ {ξ ∈Rn : C12k
≤ |ξ| ≤C22k+1}

for some k, and constants C1 ≤C2. Then for any α≥ 0 and 1 ≤ p ≤ q ≤∞,

C12αk
‖g‖Lq (Rn ) ≤ ‖|∇|

αg‖Lq (Rn ) ≤C22
αk+nk( 1

p − 1
q )
‖g‖Lp (Rn ).

Now let P̂k f (ξ) = ψ̂(2−kξ) f̂ (ξ), where ψ̂ ∈C∞, supp ψ̂⊆ {ξ ∈Rn : ξ ∈ ( 1
2

,2)}. Then

‖(∇⊥)−β f ‖L∞ ≤

∞∑

k=0

‖Pk ((∇⊥)−β f )‖L∞ +

∞∑

k=0

‖P−k ((∇⊥)−β f )‖L∞ .

We make use of the above Bernstein inequality several times to control each of these terms.

Indeed,

∞∑

k=0

‖Pk ((∇⊥)−β f )‖L∞ ≤

∞∑

k=0

2−kβ
‖Pk f ‖L∞ ≤

∞∑

k=0

2
−kβ+nk( 1

n
β
+δ

)

‖Pk f ‖
L

n
β
+δ

≤ ‖ f ‖
L

n
β
+δ

∞∑

k=0

2
−kβ(1− n

n+βγ
)
≤C‖ f ‖

L
n
β
+δ .

In the same way,

∞∑

k=0

‖P−k ((∇⊥)−β f )‖L∞ ≤

∞∑

k=0

2kβ
‖P−k f ‖L∞ ≤

∞∑

k=0

2
kβ−nk( 1

n
β
−δ

)

‖Pk f ‖
L

n
β
−δ

≤ ‖ f ‖
L

n
β
−δ

∞∑

k=0

2
kβ(1− n

n−βγ
)
≤C‖ f ‖

L
n
β
−δ .

APPENDIX B. GENERALIZED GRONWALL’S ESTIMATE: LEMMA 6

The proof of Lemma 6 is straightforward, by a bootstrapping argument. We show that every

Lyapunov exponent less than −µ can be bootstrapped lower. First, relabeling I (τ) → (1+|A1|+

|A2|+ |A3)−1I (τ), we may assume without loss of generality that A1 = A2 = A3 = 1. Next, assume

that γ < µ is a Lyapunov exponent, that is I (τ) ≤ C e−γτ. We know by the a priori assumed

boundedness of I (τ) there is such an exponent. Applying this in (2.14), we obtain an improved

estimate for I (τ). Indeed,

I (τ)≤ e−µτ
+C e−στ

∫τ

0

e s(σ−κ−γ)

(min(1, |τ− s|)a
d s

If σ−κ−γ 6= 0, we have for τ> 1,
∫τ

0

e s(σ−κ−γ)

|(min(1, |τ− s|)a
d s ≤

∫τ−1

0
e s(σ−κ−γ)d s +eτ(σ−κ−γ)e |σ−κ−γ|

∫τ

τ−1

1

|τ− s|a
d s

≤
e (τ−1)(σ−κ−γ) −1

σ−κ−γ
+Ca,σ,κ,γeτ(σ−κ−γ).

whence the bound

I (τ)≤ e−µτ
+Ca,σ,κ,γe−τ(κ+γ).

It follows that min(µ,γ+κ) > γ is a new, better Lyapunov exponent than γ.

In general, we can keep σ−κ−γ away from zero (and so the previous argument valid in all

cases), if we readjust the γ if necessary.
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In practice, starting with γ = 0, we jump immediately to κ by the previous argument, since

σ−κ> 0, by assumption. Since κ<µ, we can apply the same argument again with γ= κ. At this

point, either 2κ > µ and we finish off (by readjusting slightly γ by taking it smaller, like γ = 2κ
3

,

if it happens that, say |σ−2κ| ≤ κ
2

). If not, that is if 2κ< µ, take γ= 2κ to be our new Lyapunov

exponent and repeat. Eventually, for some n0, n0κ<µ≤ (n0+1)κ and we will reach a Lyapunov

exponent µ.

APPENDIX C. COMMUTATOR ESTIMATES WITH WEIGHTS

In this section, we prove (4.8) and (5.13).

C.1. Proof of (4.8). Recall, that for s ∈ (0,2)

[|∇|s , g ] f (x) = |∇|
s (g f )− g |∇|

s f = cs

∫
f (x)g (x)− f (y)g (y)

|x − y |2+s
d y − g (x)cs

∫
f (x)− f (y)

|x − y |2+s
d y

= cs

∫
f (y)(g (x)− g (y))

|x − y |2+s
d y.

Introduce a smooth partition of unity, that is a function ψ ∈C∞
0 (R), supp ψ⊂ ( 1

2
,2), so that

∞∑

k=−∞

ψ(2−k
|ξ|) = 1,ξ ∈ R2,ξ 6= 0.

Introduce another C∞
0 function Ψ(z) = z2ψ(z), so that we can decompose

|ξ|2 =
∞∑

k=−∞

|ξ|2ψ(2−k
|ξ|) =

∞∑

k=−∞

22k
Ψ(2−k

|ξ|).

We can then write

F (ξ) := [|∇|
α
2 , |ξ|2] f

∑

k

22k [|∇|
α
2 ,Ψ(2−k

·)] f (ξ) =
∑

k

22k

∫
f (y)(Ψ(2−kξ)−Ψ(2−k y))

|ξ− y |2+
α
2

d y.

Introducing

Fk :=

∫
| f (y)||Ψ(2−kξ)−Ψ(2−k y)|

|ξ− y |2+
α
2

d y,

we need to control

‖F‖
2
L2 =

∑

l

∫

|ξ|∼2l
|F (ξ)|2dξ=

∑

l

∫

|ξ|∼2l

∣∣∣∣∣
∑

k

22k Fk (ξ)

∣∣∣∣∣

2

dξ=

=
∑

l

∫

|ξ|∼2l

∣∣∣∣∣
∑

k>l+10

22k Fk (ξ)

∣∣∣∣∣

2

dξ+
∑

l

∫

|ξ|∼2l

∣∣∣∣∣
l+10∑

k=l−10

22k Fk (ξ)

∣∣∣∣∣

2

dξ+

+
∑

l

∫

|ξ|∼2l

∣∣∣∣∣
∑

k<l−10

22k Fk (ξ)

∣∣∣∣∣

2

dξ=: K1 +K2 +K3

We first consider the cases k > l+10. One can estimate easily Fk point-wise. More specifically,

since in the denominator of the expression for Fk , we have |ξ− y | ≥ 1
2
|ξ| ≥ 2k−3,

|Fk (ξ)| ≤ 2−k(2+α
2 )

∫
| f (y)||Ψ(2−k y)|d y ≤C 2−k(1+α

2 )
‖ f ‖L2(|y |∼2k ),
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whence

K1 ≤
∑

l

22l
∑

k1>l+10

∑

k2>l+10

2k1(1−α
2 )
‖ f ‖L2(|y |∼2k1 )2

k2(1−α
2 )
‖ f ‖L2(|y |∼2k2 )

≤
∑

k1

∑

k2

22min(k1,k2)2k1(1−α
2 )
‖ f ‖L2(|y |∼2k1 )2

k2(1−α
2 )
‖ f ‖L2(|y |∼2k2 )

≤ C
∑

k

2k(4−α)
‖ f ‖2

L2(|y |∼2k )
≤C‖|ξ|2−

α
2 f ‖2.

where we have used
∑

l :l<min(k1,k2)−10 22l ≤C 22min(k1 ,k2).

For the case k < l −10, we perform similar argument, since

|Fk (ξ)| ≤C 2−l (2+α
2 )2k

‖ f ‖L2(|y |∼2k ).

So,

K3 ≤C
∑

l

22l 2−l (4+α)
∑

k1<l−10

∑

k2<l−10

23k1‖ f ‖L2(|y |∼2k1 )2
3k2‖ f ‖L2(|y |∼2k2 )

≤ C
∑

k1

∑

k2

23k1‖ f ‖L2(|y |∼2k1 )2
3k2‖ f ‖L2(|y |∼2k2 )2

−(2+α)max(k1,k2)

≤ C
∑

k

2k(4−α)
‖ f ‖2

L2(|y |∼2k )
≤C‖|ξ|2−

α
2 f ‖2.

Finally, for the case |l −k| ≤ 10, we use

|Ψ(2−kξ)−Ψ(2−k y)| ≤ 2−k
|ξ− y ||∇Ψ(2−k (ξ− y))| ≤C 2−k

|ξ− y |,

so that

|Fk (ξ)| ≤C 2−k

∫

|y |∼2k

| f (y)|

|ξ− y |1+
α
2

d y =C 2−k
| f |χ|y |∼2k ∗

1

| · |1+
α
2

.

Thus, by Hölder’s

K2 ≤C
∑

k

∫

|ξ|∼2k
22k

∣∣∣∣| f |χ|y |∼2k ∗
1

| · |1+
α
2

∣∣∣∣
2

dξ≤C
∑

k

22k
‖| f |χ|y |∼2k ∗

1

| · |1+
α
2

‖
2
L2(|ξ|∼2k )

≤ C
∑

k

2k(4−α)
‖| f |χ|y |∼2k ∗

1

| · |1+
α
2

‖
2

L
4
α (|ξ|∼2k )

≤C
∑

k

2k(4−α)
‖ f ‖2

L2(|ξ|∼2k )
≤C‖|ξ|2−

α
2 f ‖2.

where we have used the Hausdorf-Young’s inequality

‖ f χ|y |∼2k ∗
1

| · |1+
α
2

‖
L

4
α
≤C‖

1

| · |1+
α
2

‖
L

4
2−α ,∞ ‖ f ‖L2(|ξ|∼2k ) ≤C‖ f ‖L2(|ξ|∼2k ).

C.2. Proof of (5.13). For the proof of (5.13), recall the representation formula (2.5). We will

reduce to the same expressions as above. With the partition of unity displayed above, write

[∂1|∇|
−a , |ξ|2] f (ξ) = ca

∞∑

k=−∞

22k [∂1|∇|
−a ,ψ(2−k

·)] f =

= ca

∞∑

k=−∞

22k [∂ξ1

∫

R2

ψ(2−k y) f (y)

|ξ− y |2−a
d y −ψ(2−kξ)∂ξ1

∫

R2

f (y)

|ξ− y |2−a
d y] =

= ca (a−2)
∞∑

k=−∞

22k

∫

R2

ξ1 − y1

|ξ− y |

(ψ(2−k y)−ψ(2−kξ)) f (y)

|ξ− y |2−a
d y
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Taking absolute values and estimating yields the bound

|[∂1|∇|
−a , |ξ|2] f (ξ)| ≤Ca

∞∑

k=−∞

22k

∫

R2

|ψ(2−k y)−ψ(2−kξ)|| f (y)|

|ξ− y |3−a
d y

This is of course exactly the same expression as before for the Fk , with a := 1− α
2

. Therefore, we

can apply the same estimates to obtain

‖[∂1|∇|
−a , |ξ|2] f ‖L2(R2) ≤C‖|ξ|1+a f ‖L2 .

This establishes (5.13).

APPENDIX D. SEMIGROUP ESTIMATES: PROPOSITION (3)

Proof. We have

‖∂γ(eτL f )‖2
L2(2)

≤

∫

R2
|∂γ(eτL f )|2dξ+

∫

R2
||ξ|2∂γ(eτL f )|2dξ

= e2(1−
3−β
α )τ

(∫

R2
|pγ[e−a(τ)|p|α f̂ (pe− τ

α )]|2d p +

∫

R2
|∆p [pγe−a(τ)|p|α f̂ (pe− τ

α )]|2d p
)

= e2(1−
3−β
α )τ

(∫

R2
|pγ[e−a(τ)|p|α f̂ (pe− τ

α )]|2d p +γ2

∫

R2
|p |γ|−1

∇p [e−a(τ)|p|α f̂ (pe− τ
α )]|2d p

+

∫

R2
|pγ

∆p [e−a(τ)|p|α f̂ (pe−
τ
α )]|2d p

)
.

At this point it is clear that it is better, to divide both sides by e2(1−
3−β
α )τ. Then, we want to control

the right hand side of the following

‖∂γ(eτL f )‖2
L2(2)

e2(1−
3−β
α )τ

≤

∫

R2
|pγ[e−a(τ)|p|α f̂ (pe− τ

α )]|2d p +γ2

∫

R2
||p||γ|−1

∇p [e−a(τ)|p|α f̂ (pe− τ
α )]|2d p

+

∫

R2
|pγ

∆p [e−a(τ)|p|α f̂ (pe− τ
α )]|2d p := J1 + J2 + J3.

D.1. Estimate for J1. To control J1 we divide the argument into two different cases, τ ≤ 1 and

τ> 1. In the case of τ≤ 1, we have

J1 =

∫

R2
|pγ[e−a(τ)|p|α f̂ (pe−

τ
α )]|2d p =

∫

R2
|q |2|γ|e−2a(τ)|q·e

τ
α |α

| f̂ (q)|2d q

≤

∫

{q :0≤2a(τ)|q·e
τ
α |α≤1}

|q |2|γ|e−2a(τ)|q·e
τ
α |α

| f̂ (q)|2d q

+

∞∑

j=1

∫

{q : j≤2a(τ)|q·e
τ
α |α≤ j+1}

|q |2|γ|e−2a(τ)|q·e
τ
α |α

| f̂ (q)|2d q

= J 1
1 + J 2

1 .

We can estimate, since τ≤ 1,

J 1
1 ≤

∫

0≤|q|≤ e
− τ
α

(2a(τ))
1
α

|q |2|γ|| f̂ (q)|2d q ≤
1

(a(τ))
2|γ|
α

‖ f ‖2
L2 ≤C

e
−2τ
α (1−ǫ)

(a(τ))
2|γ|
α

‖ f ‖2
L2(2)

.
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We treat J 2
1 in a similar manner. Indeed, again for τ≤ 1,

J 2
1 ≤

∞∑

j=1

e− j

∫

j≤2a(τ)|qe
τ
α |α≤( j+1)

|q |2|γ|| f̂ (q)|2d q

≤
C

(a(τ))
2|γ|
α

∞∑

j=1

e−( j+1)( j +1)
2|γ|
α

∫

j≤2a(τ)|qe
τ
α |α≤( j+1)

| f̂ |2d q ≤

≤
C

(a(τ))
2|γ|
α

‖ f ‖2
L2

∞∑

j=1

e−( j+1)( j +1)
2|γ|
α ≤C

e− 2τ
α (1−ǫ)

(a(τ))
2|γ|
α

‖ f ‖2
L2(2)

After putting together the estimates for J 1
1 and J 2

1 , we get J1 ≤C
e−

2τ
α (1−ǫ)‖ f ‖2

L2(2)

a(τ)
2|γ|
α

.

Regarding the case τ> 1, first note that in this range of τ, a(τ) ≥ 1
2

. Moreover,

| f̂ (q)− f̂ (0)| ≤ 2‖ f̂ ‖L∞ , | f̂ (q)− f̂ (0)| ≤ |q |‖∇ f̂ ‖L∞ ,

whence by interpolation, we conclude that for every ǫ> 0, we have

(D.1) | f̂ (q)− f̂ (0)| ≤Cǫ|q |
1−ǫ

‖|∇|
1−ǫ f̂ ‖L∞ ≤Cǫ|q |

1−ǫ
‖ f ‖L2(2),

where in the last inequality we have used that by Hausdorf-Young’s

‖|∇|1−ǫ f̂ ‖L∞ ≤
∫

R2 |ξ|1−ǫ| f (ξ)|dξ. ‖ f ‖L2(2). Therefore,

J1 =

∫

R2
|pγ[e−a(τ)|p|α f̂ (pe− τ

α )]|2d p = e
2τ
α (|γ|+1)

∫

R2
e−2a(τ)|q·e

τ
α |α

|q |2|γ|| f̂ (q)|2d q

≤ e
2τ
α (|γ|+1)

‖ f ‖2
L2(2)

∫

R2
e−2a(τ)|q·e

τ
α |α

|q |2(|γ|+1−ǫ)d q

≤ e
2τ
α (|γ|+1)

‖ f ‖2
L2(2)

∫

{q :2a(τ)|q·e
τ
α |α≤1}

e−2a(τ)|q·e
τ
α |α

|q |2(|γ|+1−ǫ)d q

+ e
2τ
α (|γ|+1)

‖ f ‖2
L2(2)

∞∑

j=1

∫

{q : j≤2a(τ)|q·e
τ
α |α≤ j+1}

e−2a(τ)|q·e
τ
α |α

|q |2(|γ|+1−ǫ)d q = J 1
1 + J 2

1 .

Now

J 1
1 = e

2τ
α (|γ|+1)

‖ f ‖2
L2(2)

∫

{q :2a(τ)|q·e
τ
α |α≤1}

e−2a(τ)|q·e
τ
α |α

|q |2(|γ|+1−ǫ)d q

≤ e
2τ
α (|γ|+1)

‖ f ‖2
L2(2)

∫

{q :2a(τ)|q·e
τ
α |α≤1}

|q |2(|γ|+1−ǫ)d q ≤

≤ C e
2τ
α (|γ|+1)

‖ f ‖2
L2(2)

e−
τ
α

(2a(τ))
1
α∫

0

r 2(|γ|+1−ǫ)+1d q ≤C
e−

2τ
α (1−ǫ)‖ f ‖2

L2(2)

a(τ)
2
α (|γ|+2−ǫ)

≤C
e−

2τ
α (1−ǫ)‖ f ‖2

L2(2)

a(τ)
2|γ|
α

.
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In a similar way,

J 2
1 = e

2τ
α (|γ|+1)

‖ f ‖2
L2(2)

∞∑

j=1

∫

{q : j≤2a(τ)|q·e
τ
α |α≤ j+1}

e−2a(τ)|q·e
τ
α |α

|q |2(|γ|+1−ǫ)d q

≤ e
2τ
α (|γ|+1)

‖ f ‖2
L2(2)

∞∑

j=1

e− j

∫

{q : j≤2a(τ)|q·e
τ
α |α≤ j+1}

|q |2(|γ|+1−ǫ)d q

≤ e
2τ
α (|γ|+1)

‖ f ‖2
L2(2)

∞∑

j=1

e− j

∫(
j+1
a(τ) )

1
α e−

τ
α

(
j

a(τ) )
1
α e−

τ
α

r 2(|γ|+1−ǫ)+1dr ≤

≤ C
e−

2τ
α (1−ǫ)

a(τ)
2
α (|γ|+2−ǫ)

‖ f ‖2
L2(2)

∞∑

j=1

e− j ( j +1)2(|γ|+2−ǫ)
≤C

e−
2τ
α (1−ǫ)‖ f ‖2

L2(2)

a(τ)
2|γ|
α

.

Therefore for τ> 1 we have J1 ≤C
e−

2τ
α (1−ǫ)‖ f ‖2

L2(2)

a(τ)
2|γ|
α

.

D.2. Estimate for J2. To control J2 first note that

∇e−a(τ)|p|α
=−α a(τ) p|p|α−2e−a(τ)|p|α .(D.2)

Therefore,

J2 ≤ α2
|γ|2a(τ)2

∫

R2
||p||γ|−1

|p|α−1 e−a(τ)|p|α f̂ (pe
−τ
α )|2d p

+ |γ|2e
−2τ
α

∫

R2
|p |γ| e−a(τ)|p|α

· (∇ f̂ )(pe
−τ
α )|2d p := I1 + I2.

D.2.1. Estimate for I1. To control the first term I1 we proceed as follows

I1

a(τ)2
≤

∫

R2
e−2a(τ)|p|α

|p|2(α+|γ|−2)
| f̂ (p ·e−

τ
α )|2d p =

= e
2τ
α (α+|γ|−1)

∫

R2
e−2a(τ)|q·e

τ
α |α

|q |2(α+|γ|−2)
| f̂ (q)|2d q

≤ e
2τ
α (α+|γ|−1)

∫

{q :2a(τ)|q·e
τ
α |α≤1}

e−2a(τ)|q·e
τ
α |α

|q |2(α+|γ|−2)
| f̂ (q)|2d q

+ e
2τ
α (α+|γ|−1)

∞∑

j=1

∫

{q : j≤2a(τ)|q·e
τ
α |α≤ j+1}

e−2a(τ)|q·e
τ
α |α

|q |2(α+|γ|−2)
| f̂ (q)|2d q

= I 1
1 + I 2

1 .

We can estimate

I 1
1 ≤ e

2τ
α (α+|γ|−1)

∫

|q|≤ e
− τ
α

(2a(τ))
1
α

|q |2(α+|γ|−2)
| f̂ (q)|2d q =

= e
2τ
α (α+|γ|−1)

∫

|q|≤ e
− τ
α

(2a(τ))
1
α

|q |2(α+|γ|−2)
| f̂ (q)− f̂ (0)|2d q
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Using the relation (D.1), we obtain

I 1
1 ≤ e

2τ
α (α+|γ|−1)

‖ f ‖2
L2(2)

∫

|q|≤ e
− τ
α

(2a(τ))
1
α

|q |2(α+γ−2)
|q |2(1−ǫ)d q =

= C e
2τ
α (α+|γ|−1)

‖ f ‖2
L2(2)

∫ e
− τ
α

(2a(τ))
1
α

0
r 2(α+|γ|−ǫ)−1 dr =C

e− 2τ
α (1−ǫ)‖ f ‖2

L2(2)

a(τ)2(1+
|γ|−ǫ
α )

.

therefore, recalling that a(τ) ≤ 1, I 1
1 ≤

e−
2τ
α (1−ǫ)‖ f ‖2

L2(2)

a(τ)2(1+
|γ|
α )

.

We treat I 2
1 in a similar manner. Again, using (D.1),

I 2
1 ≤ e

2τ
α (α+|γ|−1)

∞∑

j=1

e− j

∫

j≤2a(τ)|qe
τ
α |α≤( j+1)

|q |2(α+|γ|−2)
| f̂ (q)− f̂ (0)|2d q

≤ e
2τ
α (α+|γ|−1)

∞∑

j=1

e− j

∫

j≤2a(τ)|qe
τ
α |α≤( j+1)

|q |2(α+|γ|−2)
|q |2(1−ǫ)

‖ f ‖2
L2(2)

d q

≤ e
2τ
α (α+|γ|−1)

‖ f ‖2
L2(2)

∞∑

j=1

e− j

∫

j≤2a(τ)|qe
τ
α |α≤( j+1)

|q |2(α+|γ|−1−ǫ)d q

≤ C
e

2τ
α (α+|γ|−1)‖ f ‖2

L2(2)

a(τ)2(1+
|γ|
α )

∞∑

j=1

e− j j
2(α+|γ|−ǫ)

α e− 2τ
α (α+|γ|−ǫ)

≤C
e−

2τ
α (1−ǫ)‖ f ‖2

L2(2)

a(τ)2(1+
|γ|
α )

.

After putting together the estimates for I 1
1 and I 2

1 we get I1 ≤C
e−

2τ
α (1−ǫ)‖ f ‖2

L2(2)

a(τ)
2|γ|
α

.

D.2.2. Estimate for I2.

I2 ≤ C e− 2τ
α

∫

R2
| |p||γ|−1e−a(τ)|p|α(∇ f̂ )(pe

−τ
α )|2d p =

= e
2τ
α (|γ|−1)

∫

R2
|q |2(|γ|−1)e−2a(τ)|q·e

τ
α |α

|∇ f̂ (q)|2d q

≤ e
2τ
α (|γ|−1)

∞∑

j=0

∫

{q : j≤2a(τ)|q·e
τ
α |α≤ j+1}

(
|q |2(|γ|−1)e−2a(τ)|q·e

τ
α |α

|∇ f̂ (q)|2d q
)
=

= I 1
2 + I 2

2 .

For I 1
2 , we have by Hölder’s

I 1
2 ≤ e

2τ
α (|γ|−1)

∫

0≤|q|≤ e
−τ
α

(2a(τ))
1
α

|q |2(|γ|−1)
|∇ f̂ (q)|2d q ≤

≤ C e
2τ
α (|γ|−1)

‖∇ f̂ ‖2

L
2
ǫ

(∫

0≤|r |≤ e
−τ
α

(2a(τ))
1
α

r
2(|γ|−1)

1−ǫ +1dr
)1−ǫ

= C e
2τ
α (|γ|−1)

‖∇ f̂ ‖2

L
2
ǫ

e− 2τ
α (|γ|−1)− 2τ

α (1−ǫ)

(2a(τ))
2|γ|
α − 2ǫ

α

≤C
e− 2τ

α (1−ǫ)

(a(τ))
2|γ|
α

‖∇ f̂ ‖2

L
2
ǫ

.
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By Sobolev embedding, we have ‖∇ f̂ ‖2

L
2
ǫ
≤C‖∇ f̂ ‖2

H1−ǫ(R2)
≤C‖(1−∆) f̂ ‖2

L2 =C‖ f ‖2
L2(2)

. Therefore

I 1
2 ≤C

e− 2τ
α (1−ǫ)

(a(τ))
2|γ|
α

‖ f ‖2
L2(2)

.

For I 2
2 , we estimate

I 2
2 ≤ e

2τ
α (|γ|−1)

∞∑

j=1

e− j

∫

j≤2a(τ)|qe
τ
α |α≤( j+1)

|q |2(|γ|−1)
|∇ f̂ |2d q

≤ e
2τ
α (|γ|−1)

‖∇ f̂ ‖2

L
2
ǫ

∞∑

j=1

e− j
[∫

j≤2a(τ)|qe
τ
α |α≤( j+1)

|q |
2(|γ|−1)

1−ǫ d q
]1−ǫ

.

But,

∫

j≤2a(τ)|qe
τ
α |α≤( j+1)

|q |
2(|γ|−1)

1−ǫ d q ≤C
( j

a(τ)

) 2(|γ|−1)
1−ǫ +2

e
− 2τ

α (|γ|−1)

1−ǫ − 2τ
α ,

so using again the bound ‖∇ f̂ ‖
L

2
ǫ
≤C‖ f ‖L2(2),

I 2
2 ≤ C e

2τ
α (|γ|−1)

‖ f ‖2
L2(2)

∞∑

j=1

e− j
[(

j

a(τ)

) 2(|γ|−1)
1−ǫ +2

e
− 2τ

α (α+|γ|−1)

1−ǫ − 2τ
α

]1−ǫ

≤ C
e−

2τ(1−ǫ)
α ‖ f ‖2

L2(2)

a(τ)2
|γ|
α −2ǫ

∞∑

j=1

e− j j 2α+2|γ|−2ǫ
≤C

e−
2τ
α (1−ǫ)‖ f ‖2

L2(2)

a(τ)
2|γ|
α

.

Hence after putting together the estimates for I 1
2 and I 2

2 we have I2 ≤C
e−

2τ
α (1−ǫ)‖ f ‖2

L2(2)

(a(τ))
2|γ|
α

.

D.3. Estimate for J3.

J3 =

∫

R2
|p |γ|

∆p [e−a(τ)|p|α f̂ (pe− τ
α )]|2d p ≤

∫

R2
|p |γ|

∆p [e−a(τ)|p|α] f̂ (pe
−τ
α )|2d p

+ 2

∫

R2
|p |γ|

∇e−a(τ)|p|α
·∇( f̂ (pe

−τ
α ))|2d p +

∫

R2
|p |γ| e−a(τ)|p|α

∆p ( f̂ (pe
−τ
α ))|2d p.

By (D.2) we have,

∆p [e−a(τ)|p|α] =
2∑

j=1

∂ j

(
−α a(τ) p j |p|

α−2e−a(τ)|p|α
)
=

= −α a(τ)
2∑

j=1

(
|p|α−2

+ (α−2)
p2

j

|p|
|p|α−3

+ p j |p|
α−2(−α a(τ))

p j

|p|
|p|α−1

)
e−a(τ)|p|α

=

(
−α2 a(τ)|p|α−2

+ α2 a(τ)2
|p|2(α−1)

)
e−a(τ)|p|α .
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Hence, by allowing for a slight abuse of notations by using γ, which is a multi-index instead of

|γ|, its length,

J3 . a(τ)2

∫

R2
| |p|α+|γ|−2e−a(τ)|p|α f̂ (pe−

τ
α )|2d p +

+ a(τ)4

∫

R2
| |p|2(α−1)+|γ|e−a(τ)|p|α f̂ (pe− τ

α )|2d p

+ a(τ)2e−
2τ
α

∫

R2
| |p|α+|γ|−1e−a(τ)|p|α(∇ f̂ )(pe−

τ
α )|2d p +

+ e− 4τ
α

∫

R2
||p|γe−a(τ)|p|α(∆ f̂ )(pe− τ

α )|2d p

:= I3 + I4 + I5 + I6,

D.3.1. Estimate for I3 and I4.

I3

a(τ)2
≤

∫

R2
e−2a(τ)|p|α

|p|2(α+|γ|−2)
| f̂ (p ·e− τ

α )|2d p =

= e
2τ
α (α+|γ|−1)

∫

R2
e−2a(τ)|q·e

τ
α |α

|q |2(α+|γ|−2)
| f̂ (q)|2d q

≤ e
2τ
α (α+|γ|−1)

∫

{q :2a(τ)|q·e
τ
α |α≤1}

e−2a(τ)|q·e
τ
α |α

|q |2(α+|γ|−2)
| f̂ (q)|2d q

+ e
2τ
α (α+|γ|−1)

∞∑

j=1

∫

{q : j≤2a(τ)|q·e
τ
α |α≤ j+1}

e−2a(τ)|q·e
τ
α |α

|q |2(α+|γ|−2)
| f̂ (q)|2d q

= I 1
3 + I 2

3 .

By comparing I3 with I1 it is clear that I 1
3 = I 1

1 and I 2
3 = I 2

1 , and we treat them in the same way.

Hence I3 ≤C
e−

2τ
α (1−ǫ)‖ f ‖2

L2(2)

a(τ)
2|γ|
α

.

The estimate for I4 proceeds in an identical manner, but we have a slightly different power of

p, so we present it here briefly.

I4

a(τ)4
≤

∫

R2
| |p|2(α−1)+|γ|e−a(τ)|p|α f̂ (pe

−τ
α )|2d p =

= e
τ
α (4α+2|γ|−2)

∞∑

j=0

∫

{q : j≤2a(τ)|q·e
τ
α |α≤ j+1}

(
e−2a(τ)|q·e

τ
α |α

|q |4(α−1)+2|γ|
| f̂ (q)|2d q

)
:= I 2

4 + I 2
4 .

Denoting by I 1
4 the integral corresponding to 2a(τ)|q · e

τ
α |α ≤ 1 and the rest with I 2

2 , we have by

(D.1), | f̂ (q)| = | f̂ (q)− f̂ (0)| ≤C |q |1−ǫ‖ f ‖L2(2),

I 1
4 ≤ e

τ
α (4α+2|γ|−2)

∫

{q :2a(τ)|q·e
τ
α |α≤1}

|q |4(α−1)+2|γ|
| f̂ (q)|2d q ≤

≤ e
τ
α (4α+2|γ|−2)

‖ f ‖2
L2(2)

∫

{q :2a(τ)|q·e
τ
α |α≤1}

|q |4(α−1)+2|γ|+2(1−ǫ)d q ≤C
e− 2τ

α (1−ǫ)‖ f ‖2
L2(2)

(a(τ))4+
2|γ|
α

.
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For I 2
4 , we have

I 2
4 ≤ e

τ
α (4α+2|γ|−2)

∞∑

j=1

∫

{q : j≤2a(τ)|q·e
τ
α |α≤ j+1}

|q |4(α−1)+2|γ|e−2a(τ)|q·e
τ
α |α

| f̂ (q)|2d q

≤ e
τ
α (4α+2|γ|−2)

∞∑

j=1

e− j

∫

{q : j≤2a(τ)|q·e
τ
α |α≤ j+1}

|q |4(α−1)+2|γ|
| f̂ (q)− f̂ (0)|2d q

≤ e
τ
α (4α+2|γ|−2)

‖ f ‖2
L2(2)

∞∑

j=1

e− j

∫

{q : j≤2a(τ)|q·e
τ
α |α≤ j+1}

|q |4(α−1)+2|γ|
|q |2(1−ǫ)d q

≤ e
τ
α (4α+2|γ|−2)

‖ f ‖2
L2(2)

e− τ
α (4α+2|γ|−2ǫ)

(a(τ))4+
2|γ|
α − 2ǫ

α

∞∑

j=1

e− j j 2(2α+|γ|−ǫ)
≤C

e− 2τ
α (1−ǫ)

(a(τ))4+
2|γ|
α

‖ f ‖2
L2(2)

.

Therefore I4 ≤C
e−

2τ
α (1−ǫ)‖ f ‖2

L2(2)

(a(τ))
2|γ|
α

.

D.4. Estimate for I5.

I5

a(τ)2
≤ C e−

2τ
α

∫

R2
| |p|α+|γ|−1e−a(τ)|p|α(∇ f̂ )(pe

−τ
α )|2d p =

= e
2τ
α (α+|γ|−1)

∫

R2
|q |2(α+|γ|−1)e−2a(τ)|q·e

τ
α |α

|∇ f̂ (q)|2d q

≤ e
2τ
α (α+|γ|−1)

∞∑

j=0

∫

{q : j≤2a(τ)|q·e
τ
α |α≤ j+1}

(
|q |2(α+|γ|−1)e−2a(τ)|q·e

τ
α |α

|∇ f̂ (q)|2d q
)
=

= I 1
5 + I 2

5 .

For I 1
5 , we have by Hölder’s

I 1
5 ≤ e

2τ
α (α+|γ|−1)

∫

|q|≤ e
−τ
α

(2a(τ))
1
α

|q |2(α+|γ|−1)
|∇ f̂ (q)|2d q ≤

= C e
2τ
α (α+|γ|−1)

‖∇ f̂ ‖2

L
2
ǫ

e− 2τ
α (α+|γ|−1)− 2τ

α (1−ǫ)

(2a(τ))2+
2|γ|
α − 2ǫ

α

≤C
e− 2τ

α (1−ǫ)

(a(τ))2+
2|γ|
α

‖∇ f̂ ‖2

L
2
ǫ

.

However, by Sobolev embedding, we have as before ‖∇ f̂ ‖2

L
2
ǫ
≤C‖ f ‖2

L2(2)
.

For I 2
5 , we estimate

I 2
5 ≤ e

2τ
α (α+|γ|−1)

∞∑

j=1

e− j

∫

j≤2a(τ)|qe
τ
α |α≤( j+1)

|q |2(α+|γ|−1)
|∇ f̂ |2d q

≤ e
2τ
α (α+|γ|−1)

‖∇ f̂ ‖2

L
2
ǫ

∞∑

j=1

e− j
[∫

j≤2a(τ)|qe
τ
α |α≤( j+1)

|q |
2(α+|γ|−1)

1−ǫ d q
]1−ǫ

.

But,

∫

j≤2a(τ)|qe
τ
α |α≤( j+1)

|q |
2(α+|γ|−1)

1−ǫ d q ≤C
( j

a(τ)

) 2(α+|γ|−1)
1−ǫ +2

e
− 2τ

α (α+|γ|−1)

1−ǫ −
2τ
α ,
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so using again the bound ‖∇ f̂ ‖
L

2
ǫ
≤C‖ f ‖L2(2),

I 2
5 ≤ C e

2τ
α (α+|γ|−1)

‖ f ‖2
L2(2)

∞∑

j=1

e− j
[(

j

a(τ)

) 2(α+|γ|−1)
1−ǫ +2

e
− 2τ

α (α+|γ|−1)

1−ǫ − 2τ
α

]1−ǫ

≤ C
e−

2τ(1−ǫ)
α ‖ f ‖2

L2(2)

a(τ)2+2
|γ|
α −2ǫ

∞∑

j=1

e− j j 2α+2|γ|−2ǫ
≤C

e−
2τ
α (1−ǫ)‖ f ‖2

L2(2)

a(τ)2+
2|γ|
α

.

Hence after putting together the estimates for I 1
5 and I 2

5 we have I5 ≤C
e−

2τ
α (1−ǫ)‖ f ‖2

L2(2)

(a(τ))
2|γ|
α

.

D.5. Estimate for I6. In the same way we can get the estimate for I6. Indeed,

I6 ≤ e−
4τ
α

∫

R2

∣∣∣ |p||γ|e−a(τ)|p|α(∆ f̂ )(pe
−τ
α )

∣∣∣
2

d p = e
2τ
α (|γ|−1)

∫

R2
|q |2|γ|e−2a(τ)|q·e

τ
α |α

|∆ f̂ (q)|2d q

≤ e
2τ
α (|γ|−1)

[∫

{q :2a(τ)|q·e
τ
α |≤1}

+

∞∑

j=1

∫

{q : j≤2a(τ)|q·e
τ
α |≤ j+1}

] (
|q |2|γ|e−2a(τ)|q·e

τ
α |α

|∆ f̂ (q)|2d q
)

= I 1
6 + I 2

6 .

For I 1
6 ,

I 1
6 ≤ e

2τ
α (|γ|−1)

∫

|q|≤ e
− τ
α

(2a(τ))
1
α

|q |2|γ||∆ f̂ (q)|2d q =
e

2τ
α (|γ|−1)e−

2τ|γ|
α

(a(τ))
2|γ|
α

∫

|q|≤ e
− τ
α

(2a(τ))
1
α

|∆ f̂ (q)|2d q ≤

≤ C
e− 2τ

α

(a(τ))
2|γ|
α

‖ f ‖2
L2(2)

.

For I 2
6 , we have

I 2
6 ≤ e

2τ
α (|γ|−1)

∞∑

j=1

e− j

∫

j≤2a(τ)|qe
τ
α |α≤( j+1)

|q |2|γ||∆ f̂ (q)|2d q

≤
e

2τ
α (|γ|−1)e−

2τ|γ|
α

a(τ)
2|γ|
α

∞∑

j=1

e− j ( j +1)
2|γ|
α

∫
|∆ f̂ (q)|2d q ≤C

e− 2τ
α

(a(τ))
2|γ|
α

‖ f ‖2
L2(2)

.

Therefore,

I6 ≤C
e−

2τ
α

(a(τ))
2|γ|
α

‖ f ‖2
L2(2)

≤C
e−

2τ
α (1−ǫ)

(a(τ))
2|γ|
α

‖ f ‖2
L2(2)

.

Putting it all together finishes off the proof. �
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