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ABSTRACT. We consider the Kawahara model and two fourth order semi-linear Schrödinger equa-
tions in any spatial dimension. We construct the corresponding normalized ground states, which
we rigorously show to be spectrally stable.

For the Kawahara model, our results provide a significant extension in parameter space of the
current rigorous results. In fact, our results establish (modulo an additional technical assump-
tion, which should be satisfied at least generically), spectral stability for all normalized waves
constructed therein - in all dimensions, for all acceptable values of the parameters. This, com-
bined with the results of [5], provides orbital stability, for all normalized waves enjoying the non-
degeneracy property. The validity of the non-degeneracy property for generic waves remains an
intriguing open question.

At the same time, we verify and clarify recent numerical simulations of the spectral stability
of these solitons. For the fourth order NLS models, we improve upon recent results on spectral
stability of very special, explicit solutions in the one dimensional case. Our multidimensional
results for fourth order anisotropic NLS seem to be the first of its kind. Of particular interest is
a new paradigm that we discover herein. Namely, all else being equal, the form of the second
order derivatives (mixed second derivatives vs. pure Laplacian) has implications on the range of
existence and stability of the normalized waves.

1. INTRODUCTION

We consider several dispersive models in one and multiple space dimensions. Our main mo-
tivating example will be the (generalized) Kawahara equation, which is a fifth order generalized
KdV equation, which allows for third order dispersion effects as well. Namely, we set

(1.1) ut +uxxxxx +buxxx − (|u|p−1u)x = 0, x ∈ R, t ≥ 0, p > 1

This is a model that appears in the study of plasma and capillary waves, where the third order
dispersion is considered to be weak. In fact, Kawahara studied the quadratic case1 [26] and he
argued that the inclusion of a fifth order derivative is necessary for capillary-gravity waves, for
values of the Bond number close to the critical one. Craig and Groves, [8] offered some further
generalizations. Kichenassamy and Olver, [28] have studied the cases where explicit waves exist,
see also Hunter-Scheurle, [16] for existence of solitary waves.

Another model, which is important in the applications, is the non-linear Schrödinger equa-
tion with fourth order dispersion. We consider two versions of it, which will turn out to be
qualitatively different, from a the point of view of the stability of their standing waves. More
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precisely,

i ut +∆2u +ε(〈~b,∇〉)2u −|u|p−1u = 0, (t , x) ∈ R×Rd ,(1.2)

i ut +∆2u +b∆u −|u|p−1u = 0, (t , x) ∈ R×Rd ,(1.3)

where d ≥ 1, p > 1,ε = ±1. These have been much studied, both in the NLS as well as Klein-
Gordon context, since the early 90’s, see for example [1, 2].

For both models, we will be interested in the existence of solitons, and the corresponding
close to soliton dynamics, in particular spectral stability. For the Kawahara, the relevant objects
are traveling waves, in the form u(x, t ) =φ(x +ωt ), where φ is dying off at infinity. These satisfy
profile equation of the form

(1.4) φ′′′′+bφ′′+ωφ−|φ|p−1φ= 0.

Similarly, standing wave solutions in the form u = e−iωtφ,ω > 0, with real-valued φ for the
fourth order NLS (1.2) and (1.3) solve the elliptic profile equations

∆2φ+ε(〈~b,∇〉)2φ+ωφ−|φ|p−1φ= 0(1.5)

∆2φ+b∆φ+ωφ−|φ|p−1φ= 0.(1.6)

Constructing solutions to (1.4), and more generally (1.5) and (1.6), is not straightforward task.
In fact, it depends on the parameter p, the sign of the parameter b, as well as the dimension
d ≥ 1. Here, it is worth noting the works of Albert, [1] and Andrade-Cristofani-Natali, [2] in
which the authors have mostly studied the stability of some explicitly available solutions in one
spatial dimension.

We proceed differently, by means of variational methods. More specifically, we employ the
constrained minimization method, which minimizes total energy with respect to a fixed particle
number, or L2 mass. In addition to being the most physically relevant, the waves constructed
this way (which we refer to henceforth as normalized waves) have good stability properties.

This brings us to the second important goal of the paper. Namely, we wish to examine the
spectral stability of waves arising as solutions of (1.4) and (1.5). Our constructions will not yield
explicit waves2. Thus, we need to decide about their stability, based on their construction and
properties.

1.1. Previous results.

1.1.1. The Kawahara model. We would like to review the history of the problem for existence
and stability of the traveling waves. We concentrate mostly on some recent results in the last
twenty years or so, which we feel are most pertinent to our results. We would like to emphasize
an important point, namely that since uniqueness results are generally lacking3, it is hard to
compare different results about waves obtained by different methods, as they may be different
in shape and stability properties.

In [12], [21], the authors have shown that certain waves of depression (i.e. b < 0) are stable.
In [21], the author establishes an important, Vakhitov-Kolokolov type criteria for certain waves,
but it appears that it is hard to verify outside of a few explicit examples. In [6], Bridges and
Derks, have studied a Kawahara-type model, with more general nonlinearity. They have em-
ployed the Evans function method to locate the point spectrum (and hence the stability) of the
corresponding linearizations. The results of their work are mostly computationally aided.

2although some do exist, for very specific values of the parameter b and d = 1, more on this below
3both as minimizers of constrained variational problem and as solutions of the PDE
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Levandosky, [29] has studied the problem for existence of such waves via an energy - mo-
mentum type argument and concentration compactness. Groves, [11] has shown the existence
of multi-bump solitary waves for certain homogeneous nonlinearities. Haragus-Lombardi-
Scheel, [15] have considered spatially periodic solutions and solitary waves, which are asymp-
totic to them at infinity. They showed spectral stability for such small amplitude solutions. We
should also mention the work [2], in which the authors consider the orbital stability for explicit
periodic solutions of the Kawahara problem, subjected to a quadratic nonlinearity.

The paper of Angulo, [3] gives some sufficient conditions for instability of such waves, both
for the cases b > 0 and b < 0. Levandosky, [30] nicely summarizes the results in the literature4

and offers rigorous analysis for stability/instability close to bifurcation points. Furthermore,
his paper provides an useful, numerically aided, classification of solitary waves of the Kawa-
hara model, based on the type of non-linearity (i.e. the power p) and the parameters of the
problem b,ω. The exhaustive tables on p. 164, [30] provided a good starting point for our inves-
tigation. We should mention that the waves considered in [30] are produced as the constrained
minimizers of the following variational problem

(1.7)

{
Jω[u] = ∫

Rd |∆u(x)|2 −b|∇u(x)|2 +ωu2(x)d x → min∫
Rd |u(x)|p+1d x = 1

We take different approach below, by constructing the normalized waves. These are the waves
that precisely minimize energy, when one constrains the L2 norm, see Section 3.1.

An important point we would like to make however is that the procedure outlined by (1.7)
provides waves for a considerably wider range of p, than the ones produced in Section 3.1.

Namely, the minimizers of (1.7) exist for p ∈ (1, pmax), with pmax(d) =
{ ∞ d = 1,2,3,4

1+ 8
d−4 d ≥ 5

whereas, the normalized waves constructed herein are only available for p ∈ (1,1+ 8
d ).

1.1.2. Fourth order NLS model. The fourth order Schrödinger equation was introduced in [24],
[25], where it plays an important role in modeling the propagation of intense laser beams in a
bulk medium with Kerr nonlinearity. Moreover, the equation was also used in nonlinear fiber
optics and the theory of optical solitons in gyro tropic media. The problem for the existence and
the stability of the waves arising in (1.5) has been the subject of investigations of a few recent
works, the results of which we summarize below.

For the case of d = 1, p = 3 (and in fact only for the special value of ε = −1,b = 1 and ω =
4

25 ), the elliptic problem (1.4) (or equivalently (1.5)) was considered by Albert, [1] in relation
to soliton solutions to related approximate water wave models. The explicit soliton, φ0(x) =√

3
10 sech2

(
xp
20

)
, was studied in detail in [1]. Important properties of the corresponding lin-

earized operators were established. These properties allowed Natali and Pastor, [33] to estab-
lish the orbital stability of this wave, see also [13] for alternative approach and extensions to
Klein-Gordon solitons. One of the central difficulties that the authors faced is that this solution
is only available explicitly for an isolated value of5 ω= 4

25 . Additionally, the problem for stability
of the equation (1.2) in d = 1, ε=−1,b = 1 and general p were addressed in the works [22] and
[23]. The numerically generated waves were shown to exists for every p > 1, but they are stable

4but he considers more general non-linearities, containing powers of derivatives as well
5which precludes one from differentiating with respect to the parameter ω as is customary in these types of

arguments
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only for p ∈ (1,5). Further (mostly numerical) investigations regarding this model are available
in the papers [24], [25].

Finally, it is important to discuss the recent work [5], as it has significant overlap with ours.
In it, the authors have studied (1.3) in great detail, including the stability of the waves. They
have constructed the waves in a similar manner, in fact the existence part of our Theorem 4 is
similar in nature6. In addition, they discuss some cases, in which they can show the important
non-degeneracy property, that is K er [L+] = span[∇φ]. This is rigorously verified in two cases
only:

• the one dimensional case, d = 1, with b < 0, b2 > 4ω.
• for any dimension d ≥ 2, but with b < 0 and |b| sufficiently large,

Concerning stability of the waves, the authors of [5] do not actually establish stability for any
given example. On the other hand, they show that orbital stability holds, once one can verify
non-degeneracy and the index condition 〈L −1+ φ,φ〉 < 0. The concrete details of these results
are provided in [5], although this is a more general theorem, see for example Theorem 5.2.11,
[19]. The non-degeneracy was already discussed, while the verification of 〈L −1+ φ,φ〉 < 0 is left
as an open problem in [5]. This last condition however is essentially equivalent, modulo some
easy to establish technical assumptions, to the spectral stability, see Corollary 1 below.

In this work, we actually do show 〈L −1+ φλ,φλ〉 ≤ 0 for all waves produced in Theorems 1, 3, 4,
thus answering the open problem in [5]. With the exception of the case 〈L −1+ φλ,φλ〉 = 0 (which
is a non-degeneracy condition of sort, that we cannot rule out), our results provide rigorously for
spectral stability for all waves constructed therein - in all dimensions d ≥ 1, for all allowed values
of b : d = 1,b ∈ R and d ≥ 2,b < 0. This, in combination with the results of [5], shows orbital
stability, for all normalized waves enjoying the non-degeneracy property of the wave as well as
the property 〈L −1+ ϕλ,ϕλ〉 6= 0.

1.2. Main results: Kawahara waves. It is easy to informally summarize our results - all normal-
ized waves, whenever they exist, turn out to be spectrally stable. This is an interesting paradigm,
which is currently under investigation in a variety of models. Our hope is that the approach
here will shed further light on this interesting phenomena in a much more general setting. As
we have alluded to above, our focus will be the Kawahara problem, (1.1), for both positive and
negative values of b.

1.2.1. Kawahara waves: Existence. In order to construct solutions to the elliptic problem (1.4),
we shall work with the following variational problem

(1.8)

{
I [φ] = 1

2

∫
R[|φ′′(x)|2 −b|φ′(x|2]d x − 1

p+1

∫
R |φ(x)|p+1d x → min∫

Rφ
2(x)d x =λ,

where one could take φ in the Schwartz class, in order to make I [φ] meaningful. Introduce the
scalar function

mb(λ) = inf
φ∈H 2(R),‖φ‖2

2=λ
I [φ],

which plays a prominent form in the subsequent arguments. Let us emphasize that it is not a
priori clear whether the problem (1.8) is well-posed (i.e. mb(λ) > −∞) for all λ. We have the
following existence result.

6although more details on radial symmetry, the zero set and exponential decay of the waves are derived as well
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Theorem 1. (Existence of the normalized Kawahara traveling waves)
Let p ∈ (1,9),λ> 0,b ∈ R satisfy one of the following

(1) 1 < p < 5,λ> 0
(2) For 5 ≤ p < 9 and all sufficiently large7 λ

Then, the constrained minimization problem (1.8) has a solution, φλ ∈ H 4(R) : ‖φ‖2
L2 = λ and

ω = ω(b,λ,φ). Moreover, φλ satisfies the Euler-Lagrange equation (1.4) in a classical sense. We
call such solutions φλ normalized waves.

Remark: The Lagrange multiplier ω may depend on the normalized wave φ. In particular,
we can not rule out the existence of two constrained minimizers of (1.8), φλ, φ̃λ, withω(λ,φλ) 6=
ω(λ, φ̃λ). This is of course related to the uniqueness problem for the minimizers of (1.8) (and it
should be a much simpler one), but it is open at the moment.

1.2.2. Kawahara waves: stability. We now discuss our results concerning the stability of the
waves produced in Theorem 1 - we employ the standard definition of spectral stability, see
Definition 2 in Section 2.3 below. Before we give the formal statements, we need to state an
important property of the waves φ constructed in Theorem 1. Namely, upon introducing the
self-adjoint linearized operator

L+ = ∂4
x +b∂2

x +ωb,λ−p|φλ|p−1,

we say that φλ is weakly non-degenerate, if φλ⊥ K er [L+]. In particular, L −1+ φλ is well-defined.

Theorem 2. Let λ> 0 and p satisfy the requirements of Theorem 1, andφλ is any minimizer con-
structed therein. Then, φλ is weakly non-degenerate. If in addition, the condition 〈L −1+ φλ,φλ〉 6=
0 is satisfied, then the wave φλ is spectrally stable, as a solution to the Kawahara problem (1.1),
in the sense of Definition 2 below.

Remarks:

• The condition 〈L −1+ φλ,φλ〉 6= 0 appears frequently as a non-degeneracy condition in
the literature, [19]. It is worth noting that such a condition has a clear physical spectral
meaning, namely that the eigenvalue at zero for ∂xL+, generated by the translational
invariance, has an associated Jordan cell of order exactly two. Physically, such an eigen-
value is expected to be of algebraic multiplicity exactly two and geometric multiplicity
one, as this is the only invariance in the system, so this must hold generically. We do not
have a rigorous proof of this fact at the moment.

• The results of Theorem 2 present rigorous sufficient conditions for stability of traveling
waves in much wider range than previously available. In fact, our results confirm8 the
available numerical simulations by Levandosky, [30]. For example, it is quite obvious
that the bifurcation point is at9 p = 5. More precisely, for powers p < 5 all waves are
stable10, while for p > 5, some unstable waves start to appear (which are of course not
normalized). For p ≥ 9, Levandosky observed a very small set of stable waves, again
none of them normalized, but rather generated as minimizers of (1.7).

7Here, for all given p ∈ [5,9), for both b > 0,b < 0, there is a specific valueλb,p and we assume that λ>λb,p
8With the usual caveat, that since there is no uniqueness, it is possible that the waves considered in [30] are

different than ours!
9corresponds to the case p = 6 in the notations of [30]
10except at p = 4 (p = 5 in the notations of [30]) - for a small region in the parameter space, an instability is

observed numerically. This must be a fluke of the computations in [30], because as we see from Theorem 1, the
stable region is up to p < 5
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• The Cauchy problem for the particular version of the Kawahara problem (1.1) consid-
ered herein, has not been studied methodically, to the best of our knowledge. Based on
the results of the standard NLS though, one might conjecture that the problem is glob-
ally well-posed for all values 1 < p < 9. An important related issue is the conservation of
Hamiltonian, momentum and L2 mass along the evolution of solutions emanating from
sufficiently nice data.

• In the presence of satisfactory well-posedness theory, as outlined above, nonlinear (or
strong orbital) stability of the wave φ(x +ωt ) follows from our arguments, once one can
establish that the linearized operator L+ has one dimensional kernel, namely K er [L+] =
span[φ′]. This is in essence standard, but it does not follow directly within the Grillakis-
Shatah-Strauss formalism, [14], since this approach would require the smoothness of
the mapping λ→ φλ, which is currently unknown. In particular, we refer to a method
pioneered by T. B. Benjamin in [4], for the stability of the KdV waves, which has since
been refined and improved by other authors. On the other hand, we refer to the argu-
ments for the NLS case to [5].

• The non-degeneracy K er [L+] = span[φ′] appears to be a hard problem in the theory.
An easier version would be to establish such a non-degeneracy of the kernel, if φ is a
minimizer of (1.8). A harder problem would be to do so, knowing thatφ is just a solution
to the PDE (1.4). In both cases, the non-degeneracy is directly relevant to the uniqueness
of the ground state, which is even harder open problem in the area. See [9] for discussion
about these and related issues.

1.3. Main results: fourth order NLS waves. We start with the existence result for the models.

1.3.1. Existence of normalized waves for fourth order NLS models. Before we state the results
for the fourth order NLS models, we need to make an obvious reduction of the equation (1.2).
Namely, picking a matrix A ∈ SU (n), so that~b = |~b|A~e1, we can clearly reduce matters (both the
existence of the solutions of the profile equation (1.5) and its stability analysis), by the transfor-
mation û(ξ) → û(A∗ξ), to the following problem:

(1.9) i ut +∆2u +ε|b|2∂2
x1

u −|u|p−1u = 0

and its associated elliptic profile equation

(1.10) ∆2φ+ε|b|2∂2
x1
φ+ωφ−|φ|p−1φ= 0.

That is, the existence of solutions to (1.10) is equivalent to the existence of solutions to (1.5)
(under the appropriate transformation) and their stability is equivalent to the stability of their
counterparts. Thus, it suffices to discuss the fourth order NLS problem (1.9), with its solitons
satisfying (1.10). Our variational setup in the anisotropic case is as follows

(1.11)

{
I [φ] = 1

2

∫
Rd [|∆φ(x)|2 −ε|~b|2|∂x1φ(x)|2]d x − 1

p+1

∫
Rd |φ(x)|p+1d x → min∫

Rd φ2(x)d x =λ,

Theorem 3. (Stability of the normalized waves for the fourth order NLS: mixed derivatives)
Let d ≥ 1,ε=−1. Let p ∈ (1,1+ 8

d ), λ> 0 and

(1) 1 < p < 1+ 8
d+1 ,λ> 0

(2) If 1+ 8
d+1 ≤ p < 1+ 8

d , assume a sufficiently large λ.
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Then, there exists φ ∈ H 4(Rd )∩Lp+1(Rd ) satisfying (1.10), with an appropriate ω=ω(λ,φ).
The wave φλ is constructed as constrained minimizer of (1.11), with ‖φλ‖2

L2 = λ. Assuming in

addition the condition 〈L −1+ φλ,φλ〉 6= 0, then e−iωλtφλ(x) is a spectrally stable solution of (1.9),
in the sense of Definition 2 below.

Remark: The case ε= 1, in the higher dimensions d ≥ 2, while undoubtedly interesting in the
applications, is much more subtle, and it cannot be analyzed with the methods of this paper.
We will address some aspects of it in a forthcoming publication [27].

Despite the obvious similarities with (1.5), the fourth order NLS with pure Laplacian, (1.3) and
its associated profile equation (1.6), turn out quite different - even at the level of the existence
of the waves and their stability. We introduce the relevant variational problem

(1.12)

{
I [φ] = 1

2

∫
Rd [|∆φ(x)|2 −b|∇φ(x)|2]d x − 1

p+1

∫
Rd |φ(x)|p+1d x → min∫

Rd φ2(x)d x =λ,

Theorem 4. (Stability of the normalized waves for the fourth order NLS: pure Laplacian case)
Let d ≥ 1, b < 0. Let p ∈ (1,1+ 8

d ), λ> 0 and

(1) 1 < p < 1+ 4
d ,λ> 0

(2) If 1+ 4
d ≤ p < 1+ 8

d , assume a sufficiently large λ.

Then, there exists a normalized wave φλ ∈ H 4(Rd )∩Lp+1(Rd ) : ‖φλ‖2 = λ, satisfying (1.6), with
an appropriate ω=ω(λ,φ). The soliton e−iωλtφλ(x) is a spectrally stable solution of (1.3), under
the additional condition 〈L −1+ φλ,φλ〉 6= 0, in the sense of Definition 2.

Remarks:

• The results extend the stability results of Albert, [1] for the one dimensional cubic case
p = 3.

• The results here also extend the NLS related results of [13] (namely, stability for p < 1+ 8
d

and instability otherwise), which apply to the case b = 0.
• Both results, Theorem 3 and 4 of course coincide for d = 1, but are different for d ≥

2. We do not have a good physical explanation as to why the range of existence and
stability of standing waves for the models (1.9) vis a vis (1.3) differ. In particular, the
mixed derivative model, (1.9) seems to support all stable normalized waves in the wider
range p ∈ (1,1+ 8

d+1 ),λ> 0, compared to p ∈ (1,1+ 4
d ) for (1.3). This topic clearly merits

further investigations.
• The cases b > 0,d ≥ 2 will be analyzed in a forthcoming publication, [27].

The rest of the paper is organized as follows. In Section 2, we show that distributional solu-
tions of the elliptic problems are in fact strong solutions. We also set up the relevant eigenvalue
problems, and in regards to that, we review the relevant instability index counting theories and
some useful corollaries. Finally, we present the Pohozaev identities, which imply some neces-
sary conditions for the existence of the waves. We also note that better necessary conditions
(which are closer to what we conjecture are the optimal ones) are possible, under a natural
spectral condition. In Section 3, we develop the existence theory in the one dimensional prob-
lem - this already contains all the difficulties, that one encounters in the higher dimensional
situation as well. In particular, we discuss the well-posedness of the constrained minimization
problem, the compensated compactness step, as well as the derivation of the Euler-Lagrange
equation and various spectral properties of the linearized operators, which are useful in the se-
quel. In Section 4, we indicate the main steps in the variational construction for the waves in
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the higher dimensional case. In Section 5, we provide a general framework for spectral stability,
based on the index counting formula, which is easily applicable in our setting.

2. PRELIMINARIES

We first introduce some notations and standard inequalities. We will frequently use the nota-
tion f . g , when f , g are positive quantities/functions and there is a constant C , independent
on the parameters so that f ≤C g .

2.1. Function spaces and GNS inequalities. The Lp ,1 ≤ p <∞ spaces are defined via

‖ f ‖Lp =
(∫

| f (x)|p d x

)1/p

,

For integer k, the classical Sobolev spaces W k.p ,1 ≤ p <∞ are taken to be the closure of Schwartz
functions in the norm ‖ f ‖W k,p = ‖ f ‖Lp +∑

|α|=k ‖∂α f ‖Lp .
Next, we need some Fourier analysis basics. Fourier transform and its inverse are defined via

f̂ (ξ) =
∫

Rd
f (x)e−2πi x·ξd x; f (x) =

∫
Rd

f̂ (ξ)e2πi x·ξdξ

Recall the sharp Sobolev inequality ‖ f ‖Lq (Rd ) ≤ Cs,p‖ f ‖W s,p (Rd ), where 1 < p < q < ∞ and s =
n

(
1
p − 1

q

)
. Note that for non-integer values of s, the norm on the right-hand side is defined via

‖ f ‖W s,p := ‖(1−∆)s/2 f ‖Lp ,

where á(1−∆)a g (ξ) = (1+4π2|ξ|2)a ĝ (ξ).
In addition, we shall make use of the Gagliardo-Nirenberg-Sobolev (GNS) inequality, which

combines the Sobolev estimate with the well-known log-convexity of the complex interpola-
tion functor ‖ f ‖[X0,X1]θ ≤ ‖ f ‖1−θ

X0
‖ f ‖θX1

. For example, the following estimate proves useful in the
sequel

(2.1) ‖u‖Lq (Rd ) ≤Cq,d‖∆u‖
d
2 ( 1

2− 1
q )

L2 ‖u‖1− d
2 ( 1

2− 1
q )

L2 ,

whenever q ∈ (2,∞), for d = 1,2,3,4 and 2 < q < 2d
d−4 ,d ≥ 5.

We record the formula for the Green function of (−∆+1)−1, that is Q̂(ξ) = (1+4π2|ξ|2)−1 (see
[11], p. 418)

(2.2) Q(x) = (2
p
π)−n

∫ ∞

0
e−(t+ |x|2

4t ) d t

t n/2
.

Note that Q > 0, radial and radially decreasing. Also, ‖Q‖L1(Rn ) =
∫

Rn Q(x)d x = Q̂(0) = 1, but note
that Q(0) =+∞ for n ≥ 2. In fact, there are the following classical estimates for it, p. 418, [11],

|Q(x)| ≤Ce−|x|, |x| > 1(2.3)

Q(x) ∼
{ |x|2−n +O(1) n ≥ 3

ln( 1
|x| )+O(1) n = 2

|x| < 1.(2.4)

In particular, Q ∈ Lq (Rn), whenever q < n
n−2 (or q <∞, when n = 2).
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2.2. Distributional vs strong solutions of the Euler-Lagrange equation.

Definition 1. We say that g ∈ H 2(Rd )∩Lp+1(Rd ) is a distributional solution of the equation

(2.5) ∆2g +b∆g +ωg −|g |p−1g = 0, x ∈ Rd

if the following relation holds for every h ∈ H 2(Rd )∩L∞(Rd ):

〈∆g ,∆h〉+〈b∆g +ωg ,h〉−〈g |p−1g ,h〉 = 0.

Proposition 1. Let p ∈ (1,1+ 8
d ) and b,ω be so that b2 −4ω< 0 or b2 −4ω> 0,ω> 0,b < 0. Then,

any weak solution g of (2.5) is in fact g ∈ H 4(Rd )∩L∞(Rd )∩L1+ε(Rd ) for any ε> 0. In particular,
the weak solutions of (2.5) in fact satisfy (2.5) as L2 functions.

Proof. Note that by the restrictions on b,ω, we have that the operator (∆2 +b∆+ω) is invertible
on L2(Rd ). Let g̃ := (∆2 +b∆+ω)−1[|g |p−1g ]. From Sobolev embedding, we easily get that g̃ ∈
Hα(R),α< 4− d(p−1)

2(p+1) , since

‖g̃‖Hα(Rd ) ≤ ‖|g |p−1g‖H 4−α(Rd ) ≤C‖|g |p−1g‖
L

p+1
p

≤C‖g‖p
Lp+1 .

In addition, for every test function h, we have

〈∆g̃ ,∆h〉+〈b∆g̃ +ωg̃ ,h〉 = 〈|g |p−1g ,h〉 = 〈∆g ,∆h〉+〈b∆g +ωg ,h〉.
It follows that g = g̃ in the sense of distributions, whence g ∈ Hα(Rd ). We will show that g ∈
L∞(Rd ). Denote q0 = sup{q : g ∈ Lq (Rd )}. Clearly, q0 ≥ p +1, by assumption. We will show first
that q0 =∞. Assume not. By Sobolev embedding, we have

‖g‖Lq (Rd ) = ‖g̃‖Lq (Rd ) ≤C‖|g |p−1g‖
L

p+1
p

≤C‖g‖p
Lp+1 <∞

as long as 1
q > p

p+1 − 4
d . In particular, we can take q as close to ∞ (and hence q0 =∞), if d ≤ 4.

So, assume d ≥ 5. It follows that 1
q0

≤ p
p+1 − 4

d .
Take any q0 < q <∞. We have, by Sobolev embedding

(2.6) ‖g̃‖Lq (Rd ) ≤C‖|g |p−1g‖Lr ≤C‖g‖p
Lr p ,

so long as d( 1
r − 1

q ) ≤ 4 or 1
r ≤ 4

d + 1
q . If 4

d + 1
q < 1, we take r : 1

r = 4
d + 1

q , whereas, if we have 4
d + 1

q ≥ 1,

we can take r = p+1
p and we have a contradiction right away, since the left-hand side of (2.6) is

unbounded (by the definition of q0), while the right-hand is bounded. For the remainder, take
r : 1

r = 4
d + 1

q .
Clearly, if r p < q0, this would be a contradiction, because the left-hand side is supposed to

be unbounded (by the definition of q0), while the right-hand side clearly is. We claim that this
is the case, under our restrictions for p ∈ (1,1+ 8

d ). We have

1

r
− p

q0
= 4

d
+ 1

q
− p

q0
= 4

d
− p −1

q0
+o(q −q0)

So, if we show that 4
d > p−1

q0
, we will have achieved the contradiction, as we can take q very close

to q0. Indeed, by the inequality for 1
q0

, we have p−1
q0

≤ (p −1)
(

p
p+1 − 4

d

)
Resolving the inequality

(p −1)

(
p

p +1
− 4

d

)
< 4

d
,
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leads to the solution 1 < p < 1+ 8
d−4 , which of course contains the set (1,1+ 8

d ), so it is true for
all p in the set that we are interested in. We have reached a contradiction, with q0 <∞.

Thus, q0 = ∞. This does not mean yet that g ∈ L∞(Rd ), but this follows easily by Sobolev
embedding, once we know that g ∈ ∩2≤q<∞Lq (Rd ). Furthermore, we see that the same type of
arguments imply g ∈ H 5(Rd ) and that for every p <∞ and for every ε> 0, g ∈W 4−ε,p (Rd ).

For our next step, we shall need a representation of the Green’s function of the operator (∆2+
b∆+ω)−1 as follows. We have

(∆2 +b∆+ω)−1 = (−∆+ −b +
p

b2 −4ω

2
)−1(−∆+ −b −

p
b2 −4ω

2
)−1 =

= (b2 −4ω)−1/2[(−∆+ −b −
p

b2 −4ω

2
)−1 − (−∆+ −b +

p
b2 −4ω

2
)−1].

In the case b2 −4ω > 0,ω > 0,b < 0, both −b±
p

b2−4ω
2 are positive numbers, so clearly the corre-

sponding Greens function G has decay e
−

√
−b−

p
b2−4ω
2 |x|

, according to (2.3).
As far as the case b2 − 4ω < 0 is concerned, it is not hard to see, in the same way, that the

Green’s function G has decay rate e−kω|x|, where

kω :=


p
2
p
ω+b

2 b < 0p
2
p
ω−b

2 b > 0

In both cases, the Green’s function enjoys exponential rate of decay.
For p ≥ 2, we can actually conclude that g ∈ L1(Rd ) since by the Hardy-Littlewood-Sobolev

inequality

‖g̃‖L1(Rd ) ≤ ‖G‖L1(Rd )‖|g |p−1g‖L1(Rd ) ≤C‖g‖p

Lp (Rd )
<∞,

as g ∈ L2 ∩L∞, in particular g ∈ Lp (Rd ). For p < 2, denote q0 = inf{q : g ∈ Lq (Rd )}. Our claim is
that q0 = 1. Assume for a contradiction that q0 > 1. We will show that for every q > q0, we have

that g ∈ L
q
p (Rd ), which would be a contradiction with q0 > 1. Indeed, by Hardy-Littlewood-

Sobolev
‖g̃‖

L
q
p (Rd )

≤ ‖G‖L1(Rd )‖|g |p−1g‖
L

q
p (Rd )

≤C‖G‖L1‖g‖p

Lq (Rd )
.

This establishes the contradiction with q0 > 1, hence g ∈∩1<q Lq (Rd ).
�

2.3. Linearized problems and spectral stability. We next discuss the linearized problems and
the stability of the waves. For solutions φ of (1.4), we introduce the traveling wave ansatz,
u(t , x) = φ(x +ωt )+ v(t , x + tω). Plugging this back in (1.1) and ignoring all terms O(v2), we
obtain the following linearized problem

(2.7) vt +∂x[∂4
x +b∂2

x +ω−p|φ|p−1]v = 0.

Denoting L+ := ∂4
x+b∂2

x+ω−p|φ|p−1, the associated eigenvalue problem is obtained by setting
v(t , x) → e−µt z(x) in (2.7), which results in

(2.8) ∂xL+z =µz

We proceed similarly with the linearization of the NLS problem (1.2). Consider solutionsφ of
(1.10) and then perturbations of the solution u(t , x) = e−iωtφ of (1.9) in the form u = e−iωt [φ+
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z1 + i z2]. Plugging this ansatz into (1.2), retaining only the linear in z terms and taking real and
imaginary parts leads us to the system

(2.9) ∂t

(
z1

z2

)
=

(
0 −1
1 0

)(
∆2 +ε|~b|2∂2

x1
+ω−p|φ|p−1 0
0 ∆2 +ε|~b|2∂2

x1
+ω−|φ|p−1

)(
z1

z2

)
Thus, we introduce the scalar self-adjoint operators L± (note L+ <L−){

L+ =∆2 +ε|~b|2∂2
x1
+ω−p|φ|p−1,

L− =∆2 +ε|~b|2∂2
x1
+ω−|φ|p−1

so that the eigenvalue problem associated with (2.9) and the assignment ~z → eµt~z, takes the
form

(2.10) JL~z =µ~z.

where

J :=
(

0 −1
1 0

)
,L :=

(
L+ 0
0 L−

)
.

Finally, for solutions φ of (1.6), the linearized problem appears in the form

(2.11) ∂t

(
z1

z2

)
=

(
0 −1
1 0

)(
∆2 +b∆+ω−p|φ|p−1 0

0 ∆2 +b∆+ω−|φ|p−1

)(
z1

z2

)
This is again in the form (2.10), with{

L+ =∆2 +b∆+ω−p|φ|p−1,
L− =∆2 +b∆+ω−|φ|p−1.

We are now ready to give the definition of spectral stability. Note that the essential spectrum
is, by Weyl’s theorem, is the range of the function ξ ∈ Rd → |ξ|4 −b|ξ|2 +ω. Clearly, this is the

interval [ω− b2

4 ,∞), when b > 0 and [ω,∞), when b < 0.

Definition 2. The Kawahara waves are spectrally stable, provided the eigenvalue problem (2.8)
does not have non-trivial solutions11 (µ, z) : ℜµ> 0, z ∈ H 5(R).

The waves φ are spectrally stable, if the eigenvalue problems (2.10) ( (2.11) respectively) do not
have non-trivial solutions (µ,~z) : ℜµ> 0,~z ∈ H 4(Rd )×H 4(Rd ).

2.4. Stability of linearized systems and index counting theories. We need a quick introduc-
tion of the instability index count theory, as developed in [17], [18], [34] (see also the book [19])
and more recently in [20], [31]. We will only consider appropriate representative corollaries,
which serve our purposes. For the purposes of this paper, we will follow closely the approach
and the notations in [31]. To that end, we consider an eigenvalue problem in the form12

(2.12) JL f =λ f .

We need to introduce a a real Hilbert space, so that f ∈ X , its dual X ∗, so that L : X → X ∗, so
that the bilinear form (u, v) → 〈L u, v〉 is a bounded symmetric bilinear form on X × X . Next,

11Note that by the Hamiltonian symmetry of the problem µ→ −µ, the existence of eigenvalues µ : ℜµ < 0 is
equivalent to the existence of µ : ℜµ> 0

12Before we embark on further details, let us once again emphasize that the examples that we will be interested
in herein will be either in the form (2.8) (i.e. the KdV-like case) or in the form (2.10) (i.e. the NLS like case).
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we shall need to assume that J has a domain D(J ) ⊂ X ∗, so that J : D(J ) → X , J ∗ = −J .
Furthermore, ssume that there is an L invariant decomposition of the base space in the form

X = X−⊕K er [L ]+⊕X+

where (see Section 2.1, [31]), L |X− < 0, n(L ) := di m(X−) <∞, di m(K er [L ]) <∞ and L |X+ ≥
δ, for some δ> 0. In general, we will denote by n(M) the (finite) number of negative eigenvalues
(counted with multiplicities) of a generic self-adjoint operator M .

Next, consider the finite dimensional generalized eigenspace at the zero eigenvalue, defined
as follows

E0 = g K er [JL ] = span[∪∞
k=1[K er [JL ]k ]]

Note that K er [L ] ⊂ E0 and introduce Ẽ0 : E0 = K er [L ]⊕ Ẽ0. Consider the integer k≤0
0 (L ) :=

n(L |Ẽ0
). Equivalently, taking an arbitrary basis in Ẽ0, {ψ1, . . . ,ψN } ⊂ D(L ), define k≤0

0 (L ) to be
the number of negative eigenvalues of the N ×N matrix D = (〈Lψi ,ψ j 〉)i , j ,1≤i , j≤N .

Under these general assumptions, it is proved in [31] (see Theorem 2.3 and also Theorem 1,
[18] for the case where J has a bounded inverse) that

(2.13) kr +2kc +2k≤0
0 ≤ n(L )−n(D),

where kr is the number of real and positive solutions λ in (2.12) (i.e. real instabilities), 2kc is the
number of solutions λ in (2.12) with positive real part (i.e. modulational instabilities).

2.4.1. NLS-like problem. For the eigenvalue problem in the form (2.10), we have that J is in-
vertible and anti-symmetric, J−1 = J ∗ = −J and X = H 2(Rd ), X ∗ = H−2(Rd ),d ≥ 1. In addi-
tion,assume that J : K er [L ] → (K er [L ])⊥. We now introduce the matrix D as follows.

Let K er [L ] = {φ1, . . . ,φn}, then ψ j : JLψ j = φ j . Note that the last equation has solution,
since J−1φi ∈ K er [L ]⊥ and hence L −1[J−1φi ] is well-defined. Hence the matrix D is

(2.14) Di j = 〈Lψi ,ψ j 〉 = 〈L −1[J−1φi ],J−1φ j 〉 = 〈L −1[Jφi ],Jφ j 〉.
By the index counting inequality (2.13) if n(L ) ≤ n(D), we can conclude that spectral stability
holds true, since the right-hand side of (2.13) is non-positive, hence all the indices on the left
are zero as well.

Next, we discuss g K er [JL ]. We have at least d +1 elements in K er [L ], namely φ0 :=
(

0
φ

)
and φ j :=

(
∂ jφ

0

)
, j = 1, . . . ,d . Assuming that φ ⊥ K er [L+] and ∇φ ⊥ K er [L−], we can iden-

tify at least d + 1 more elements of the generalized kernel E0, namely ψ0 =
(

L −1+ φ

0

)
and

ψ j =
(

0
−L −1− ∂ jφ

)
, j = 1, . . . ,d . This means that the algebraic multiplicity of the zero eigen-

value is at least 2(d + 1), consisting of d + 1 eigenfunctions and d + 1 generalized eigenfunc-
tions. One may wonder whether there is any more non-trivial elements in g K er [JL ]. The
non-degeneracy condition 〈L −1+ φ,φ〉 6= 0, which appears in the statement of the main result
is necessary condition that the Jordan block associated to the eigenvector φ0 is exactly two di-
mensional. To this end, assume that there is a third element, q : JL q =ψ0. This would mean,
that there is q : L−q =L −1+ φ. By the self-adjointness of L−, the solvability condition is exactly
〈L −1+ φ,φ〉 6= 0. Indeed, R(L−) = K er (L−)⊥ = span{φ}⊥, so a third element in the Jordan cell for
φ0 does not exist exactly when 〈L −1+ φ,φ〉 6= 0.
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2.4.2. Kawahara-like problem. For eigenvalues problem in the form (2.8)

(2.15) ∂xL f =λ f ,

where we set up again X = H 2(R), X ∗ = H−2(R), while ,L =L+,J = ∂x ,J ∗ =−J . This satisfies
the requirements of the theory put forward in the beginning of this section. Next, regarding the
generalized kernel of ∂xL+, we clearly have that φ′ ∈ K er [L ] ⊆ K er [∂xL ]. Furthermore, if
φ ⊥ K er [L+], there is additional element in g K er [∂xL ], namely L −1+ φ, since (∂xL+)2[φ′] =
∂xL+[∂xL+[L −1+ φ]] = 0. This means that the zero is multiplicity two eigenvalue for ∂xL+,
which is generated by the translational invariance.

2.4.3. Sufficient condition for spectral stability. Based on the inequality (2.13), it is clear that
spectral stability holds, if n(L ) = 1 and n(D) ≥ 1. Furthermore, in both cases under considera-
tions, and under the assumptionφ⊥ K er [L+], we have the vectorψ=L −1+ φ in the generalized
kernel of JL . Thus, D11 = 〈L −1+ φ,φ〉, whence since D11 < 0, we can assert that the matrix D

has at least one negative eigenvalue (since 〈De1,e1〉 = D11 < 0, which would then imply stabil-
ity. Thus, when we specify to the specific problems that we face, we can formulate the following
sufficient condition for spectral stability.

Corollary 1. For the spectral problems (2.8) and (2.10), spectral stability follows, provided

• n(L+) = 1, L− ≥ 0.
• φ⊥ K er [L+], 〈L −1+ φ,φ〉 < 0.

2.5. Necessary conditions for existence of (1.5). We have the following Pohozaev identities.

Lemma 1. (Pohozaev’s identities) Let some smooth and decaying φ satisfy

(2.16) ∆2φ+ε
n∑

j ,k
b j bk∂ j ,kφ+ωφ−|φ|p−1φ= 0.

Then ∫
Rd

|∆φ|2d x = d(p −1)−2(p +1)

2(p +1)

∫
Rd

|φ|p+1d x +ω
∫

Rd
|φ|2d x,(2.17)

ε

∫
Rd

|~b ·∇φ|2d x = d(p −1)−4(p +1)

2(p +1)

∫
Rd

|φ|p+1d x +2ω
∫

Rd
|φ|2d x,(2.18)

(d(p −1)−4(p +1))‖∆φ‖2 − ε(d(p −1)−2(p +1))‖~b ·∇φ‖2 +ωd(p −1)‖φ‖2d x = 0(2.19)

Proof. Multiplying (2.16) by φ and integrating over Rd we get∫
Rd

|∆φ|2d x −ε
∫

Rd
|~b ·∇φ|2d x −

∫
Rd

|φ|p+1d x +ω
∫

Rd
|φ|2d x = 0.

Also, multiplying (2.16) by x ·∇φ and integrating over Rd we get(
2− d

2

)∫
Rd

|∆φ|2d x −
(
1− d

2

)
ε

∫
Rd

|~b ·∇φ|2d x + d

p +1

∫
Rd

|φ|p+1d x −ωd

2

∫
Rd

|φ|2d x = 0.

Let A = ∫
Rd |∆φ|2d x, B = ε∫Rd |~b ·∇φ|2d x, C = ∫

Rd |φ|p+1d x and D = ∫
Rd |φ|2d x.

Solving for A and B in terms of C and D we get{
A = d(p−1)−2(p+1)

2(p+1) C +ωD,

B = d(p−1)−4(p+1)
2(p+1) C +2ωD.

which is (2.17) and (2.18). The formula (2.19) follows similarly. �
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Corollary 2. If d = 1,2, then ω> 0. If ε=−1 and ω> 0, then p < pmax.
If~b = 0, then ω> 0 and p < pmax.

Proof. If d = 1,2, the first term on the right of (2.17) is negative, forcing the positivity of the sec-

ond term, soω> 0. Next, from the relation (2.18), we see that ifω> 0,ε=−1, then d(p−1)−4(p+1)
2(p+1) <

0, or p < pmax.
If~b = 0, it is clear from (2.18) that eitherω> 0 and p < pmax orω< 0 and p > pmax (the second

one being impossible immediately for d = 1,2,3,4). For d ≥ 5, assume for a moment that ω< 0
and p > pmax = d+4

d−4 . Let us look at (2.17). The second term is now negative, while for the first

term, since p > pmax > d+2
d−2 , we also conclude its negativity. It follows that the right hand side of

(2.17) is negative a contradiction. Thus, ω> 0, p < pmax. �

As we see from the results of Corollary 2, the Pohozaev’s identities are by themselves not
strong enough to derive necessary conditions on ω, p that are close to the sufficient ones.

We believe that indeed, the necessary conditions are close to the ones required by [30] to
construct solutions of the constrained minimization problem (1.7). Namely, we expect p < pmax

and ω > b2

4 for b > 0 to be necessary for existence of localized and smooth solutions to (2.16)
and (1.6). Let us show that in fact, these follow from a natural assumption on the spectrum
for the operator L+, namely that zero cannot be an embedded eigenvalue in the continuous
spectrum of L+. Let us note that while for second order Schrödinger operators H = −∆+V ,
this is generally the case13 under decay conditions on V , this is not the case for their fourth
order counterparts, [10]. In physically relevant situations however (and the case of L+ certainly
merits this designation), embedded eigenvalues should not exist. If this is the case for L+, we
see that since by Weyl’s theorem

σa.c.[L+] =σa.c.(∆
2 +b∆+ω−p|φ|p−1) =σa.c.(∆

2 +b∆+ω) =
{
ω− b2

4 b ≥ 0
ω b < 0

.

Clearly, if zero is not embedded, it must be that ω satisfies ω ≥
{

b2

4 b ≥ 0
0 b < 0

. If that holds, at

least in the case b < 0, it follows from Corollary 2 that p < pmax as well.

3. VARIATIONAL CONSTRUCTION IN THE ONE DIMENSIONAL CASE

We start with some preparatory results.

3.1. Variational problem: preliminary steps. We now discuss the variational problem (1.8). It
is certainly not a priori clear that for a given λ > 0, such a value is finite (that is mb(λ) > −∞)
and non-trivial (i.e. mb(λ) < 0). In fact, in some cases, it is not finite, as we show below. Note
that

(3.1)
mb(λ)

λ
= inf
‖φ‖2

2=1

{
1

2

∫
R
|φ′′|2 −b|φ′|2d x − λ

p−1
2

p +1

∫
R
|φ|p+1d x

}
= inf
‖φ‖2

2=1
J [φ].

This is, clearly, a non-increasing function. In particular, mb (λ)
λ is differentiable a.e. and so is

mb(λ). Our considerations naturally split in two case, b > 0 and b < 0.

13That is point spectrum does not embed into the continuous one
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3.1.1. The case b < 0. In this section, we develop criteria (based on the parameters in the prob-
lem), which address the question for finiteness and non-triviality of mb(λ). The next lemma
shows this for p ∈ (1,5) and in addition, it establishes that mb(λ) =−∞ for p > 9.

Lemma 2. For p ∈ (1,5),b < 0, −∞< mb(λ) < 0 for all λ> 0. For p ≥ 9 then mb(λ) =−∞ for all
λ> 0.

Proof. Let φε(x) = ε1/2φ(εx), where
∥∥φ∥∥2

2 =λ. We have that

(3.2) I [φε] =
‖φ′′‖2

L2

2
ε4 −

b‖φ′‖2
L2

2
ε2 −

‖φ‖p+1
Lp+1

p +1
ε

p−1
2 .

Since 0 < p−1
2 < 2 for 1 < p < 5, we see that mb(λ) < 0 in this case by choosing ε small enough.

On the other hand, if p > 9, it is clear that limε→∞ I [φε] =−∞, whence mb(λ) =−∞ in this case.
By the GNS inequality

(3.3) ‖φ‖Lp+1(R) ≤Cp‖φ‖
Ḣ

1
2 − 1

p+1
≤Cp‖φ‖

3
4+ 1

2(p+1)

L2 ‖φ′′‖
1
4− 1

2(p+1)

L2 ,

we have

I [φ] = 1

2

∫
R
|φ′′|2 −b|φ′|2d x − 1

p +1

∫
R
|φ|p+1d x

≥ 1

2

∫
R
|φ′′|2 −b|φ′|2d x − cp‖φ′′‖

p−1
4

L2 ‖φ‖p+1− p−1
4

L2

≥ 1

4
‖φ′′‖2

L2 − cp,λ,b(‖φ′′‖
p−1

4

L2 +1) ≥−γ,

for some γ> 0 because the function g (x) = 1
2 x2 − cp,λx

p−1
4 , clearly, has a negative minimum on

[0,∞) for p ∈ (1,9). Therefore, mb(λ) ≥−γ>−∞ for p ∈ (1,9). Letting ε→∞ in (3.2) shows that
mb(λ) =−∞ for p > 9.

Consider now the case p = 9. Clearly, for large λ, mb(λ) < 0, as it is evident from the formula
(3.1). Assuming that mb(λ) ∈ (−∞,0) for some λ, let φ be such that mb(λ) ≤ I [φ] < mb (λ)

2 . Using
φN as in the formula (3.2), we see that ‖φN‖2

L2 =λ, while for N ≥ 1, we have

I [φN ] = N 4[
‖φ′′‖2

L2

2
−

b‖φ′‖2
L2

2N 2
−
‖φ‖10

L10

10
] ≤ N 4[

‖φ′′‖2
L2

2
−

b‖φ′‖2
L2

2
−
‖φ‖10

L10

10
] ≤ N 4 mb(λ)

2

But then

mb(λ) ≤ liminf
N

I [φN ] =−∞,

a contradiction.
�

Our next lemma shows that for p ∈ [5,9), there is a threshold value λp > 0, below which mb(λ)
is trivial.

Lemma 3. If b < 0 and p ∈ [5,9), then there exists a finite number λp > 0 such that

• for all λ≤λp we have mb(λ) = 0,
• for all λ>λp we have −∞< mb(λ) < 0.
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Proof. Take φε as in Lemma 2 with
∥∥φ∥∥2

2 = 1. We have

(3.4)
mb(λ)

λ
≤ lim
ε→0

J [φε] = 0.

which implies that mb(λ) ≤ 0. Now, we are going to show that for each p ∈ [5,9] there exists a
constant cp > 0 such that

(3.5) inf
φ6=0

∥∥φ∥∥p−1
2

(∫
R |φ′′|2 −b|φ′|2d x

)∫
R |φ|p+1d x

≥ cp .

Using the GNS inequality (2.1), we get the following estimates for the Lp+1 norm:

∥∥φ∥∥p+1
p+1 ≤ ap

∥∥φ′′∥∥ p−1
4

2

∥∥φ∥∥ 3p+5
4

2

≤ ap

(∫
R
|φ′′|2 −b|φ′|2d x

) p−1
8 ∥∥φ∥∥ 3p+5

4
2 ,(3.6)

and ∥∥φ∥∥p+1
p+1 ≤ bp

∥∥φ′∥∥ p−1
2

2

∥∥φ∥∥ 3p+5
4

2

≤ bp

(∫
R
|φ′′|2 −b|φ′|2d x

) p−1
4 ∥∥φ∥∥ p+3

2
2 .(3.7)

Note that for p ∈ [5,9), we have that p−1
8 < 1 ≤ p−1

4 . Therefore, interpolating between esti-
mates (3.6) and (3.7) we get

‖φ‖p+1
Lp+1 ≤ cp‖φ‖p−1

L2

∫
R
|φ′′|2 −b|φ′|2d x.

Thus we have that for all φ ∈ H 2 with
∥∥φ∥∥2

2 = 1∫
R
|φ′′|2 −b|φ′|2d x − 1

cp

∫
R
|φ|p+1d x ≥ 0,

this implies that for λ : 0 < λ ≤ γp =
(

p+1
cp

) 2
p−1

, J [φ] ≥ 0, which together with (3.4) implies that

mb(λ) = 0.
Observe that for a very large λ, the quantity

inf
‖φ‖2

2=1

{
1

2

∫
R
|φ′′|2 −b|φ′|2d x − λ

p−1
2

p +1

∫
R
|φ|p+1d x

}
is strictly negative14, so λp <∞. Clearly, λp = sup{γ> 0 : mb(λ) = 0 for all λ≤ γ}.

�

Lemma 4. Suppose b < 0, 1 < p < 9 and −∞ < mb(λ) < 0. Let φk be a minimizing sequence.
Then, there exists a subsequence φk such that:∫

R
|φ′′

k (x)|2d x → L1,
∫

R
|φ′

k (x)|2d x → L2,
∫

R
|φk (x)|p+1d x → L3,

where L1 > 0, L2 > 0 and L3 > 0.

14which can be seen by fixing φ in the infimum and taking λ>λ(φ)
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Proof. We have already established in Lemma 2 that

(3.8) I [φ] ≥ 1

4
‖φ′′‖2

L2 − cp,λ,b(‖φ′′‖
p−1

4

L2 +1).

Since, φk is minimizing, it follows that the sequence {
∫

R |φ′′
k (x)|2d x}k is bounded. By GNS in-

equality, the sequences {
∫

R |φ′
k (x)|2d x}k and

∫
R |φk (x)|p+1d x}k are bounded as well. Passing to

a subsequence a couple of times we get a subsequence {φk } such that all of the above sequences
converge. We claim that L3 cannot be zero. Indeed, otherwise,

mb(λ) = lim
k

[
1

2

∫
R
|φ′′

k (x)|2d x − b

2

∫
R
|φ′

k (x)|2d x] ≥ 0

which is a contradiction with the fact that mb(λ) < 0. By Sobolev embedding, neither L1 nor L2

could be zero, as this would force L3 = 0, which we have shown to be impossible.
�

3.1.2. The case b > 0.

Lemma 5. If b > 0 and 1 < p < 9, then −∞< mb(λ) < 0 for all λ> 0.

Proof. Since 0 < p−1
2 < 4, the dominant term in (3.2) is max(ε2,ε

p−1
2 ), so if we just take ε small

enough, we see that mb(λ) < 0. Boundedness from below follows from (3.8). �

Lemma 6. Let p : 1 < p < 5, b > 0 and fix a constant c. Then, the inequality

(3.9)
∥∥φ∥∥p+1

Lp+1 ≤ c
∥∥φ∥∥p−1

L2

[∫
R
|φ′′(x)|2 −b|φ′(x)|2 + b2

4
|φ(x)|2d x

]
.

cannot hold for all φ ∈ H 2(R).
For p ∈ [5,9], b > 0, there is a cb,p , so that

(3.10)
∥∥φ∥∥p+1

Lp+1 ≤ c
∥∥φ∥∥p−1

L2

[∫
R
|φ′′(x)|2 −b|φ′(x)|2 + b2

4
|φ(x)|2d x

]
.

Proof. Let p ∈ [5,9]. Write∫
R
|φ′′(x)|2 −b|φ′(x)|2 + b2

4
|φ(x)|2d x =

∫
R
|φ̂(ξ)|2

(
(2πξ)2 − b

2

)2

dξ.

Introducing g , so that φ̂(ξ) := ĝ (2πξ−
√

b
2 ). Clearly, (3.10) is equivalent to the estimate

(3.11)
∥∥g

∥∥p+1
Lp+1 ≤ c

∥∥g
∥∥p−1

L2

∫
R

ĝ (ξ)|2|ξ|2|ξ−Cb |2dξ

for some Cb 6= 0. We show (3.11) as follows: we decompose the function in three regions -
near the two singularities ξ = 0, ξ = Cb and away from them. That is, for values of |ξ| << 1,
we estimate by Sobolev embedding and Hölder’s inequality∥∥g<<1

∥∥
Lp+1 . ‖g<<1‖

Ḣ
1
2 − 1

p+1
= c

(∫
|ξ|<<1

|ĝ (ξ)|2|ξ|1− 2
p+1 dξ

)1/2

.

. ‖g‖
p−1
p+1

L2

(∫
|ξ|<<1

|ĝ (ξ)|2|ξ| p−1
2 dξ

) 1
p+1

.
∥∥g

∥∥p−1
L2

∫
R

ĝ (ξ)|2|ξ|2|ξ−Cb |2dξ.
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Clearly, this last estimate holds as long as 2 ≤ p−1
2 (since then |ξ−Cb | ∼ 1, when |ξ| << 1), which

is the same as p ≥ 5. The estimate is similar, with the same constraint p ≥ 5, at the singularity
ξ=Cb .

Finally, away from the two singularities, we have |ξ|2|ξ−Cb |2 ∼ |ξ|4, which means that follow-
ing the estimates above, we need p−1

2 ≤ 4, which gives the other restriction p ≤ 9.
Let now p ∈ (1,5). Take a Schwartz function χ and then φ(x) = χ(εx). Testing (3.9) for this

choice of φ leads us to ε−1 ≤ Cε−
p−1

2 (ε3 + ε). This is a contradiction as ε→ 0+, so (3.9) cannot
hold. �

Lemma 7. Suppose b > 0,λ> 0 and 1 < p < 9. Letφk be a minimizing sequence for inf‖φ‖2
L2=λ I [φ].

Then, assuming that

• p ∈ (1,5), λ> 0,
• p ∈ [5,9) and for some sufficiently large λb,p , λ>λb,p .

Then, there exists a subsequence φnk , such that:

1

2

∫
R
|φ′′

nk
(x)|2 → L1,

∫
R
|φ′

nk
(x)|2 → L2 and

∫
R
|φnk |p+1d x → L3,

where L1 > 0, L2 > 0 and L3 > 0.

Proof. First, by (3.8), the quantity
∫

R |φ′′
k (x)|2d x is bounded. By Sobolev embedding so are the

other two. By passing to a subsequence (denoted again φk ), we can assume that they converge
to three non-negative reals, L1,L2,L3.

Suppose first that L3 = 0. Then, consider the following minimization problem

inf
‖φ‖2

2=λ
1

2

∫
R
|φ′′(x)|2 −b|φ′(x)|2d x := inf

‖φ‖2
2=λ

Ĩ [φ].

Observe that since Ĩ [φ] ≥ I [φ], we have

lim
k

Ĩ [φk ] = lim
k

I [φk ] = inf
‖φ‖2

2=λ
I [φ] ≤ inf

‖φ‖2
2=λ

Ĩ [φ].

Thus, φk is minimizing for Ĩ as well and

inf
‖φ‖2

2=λ
I [φ] = inf

‖φ‖2
2=λ

Ĩ [φ].

On the other hand, inf‖φ‖2
2=λ Ĩ [φ] is easily seen to be −λb2

8 . Indeed, for function φ : ‖φ‖2
L2 = λ,

we have by Plancherel’s

(3.12) 2Ĩ [φ]+ b2

4
λ=

∫
R
|φ′′(x)|2 −b|φ′(x)|2 + b2

4
φ2(x)d x =

∫
R
|φ̂(ξ)|2

∣∣∣∣(2πξ)2 − b

2

∣∣∣∣2

dξ≥ 0.

whence inf‖φ‖2
2=λ Ĩ [φ] ≥−λb2

8 . On the other hand, for any Schwartz function χ, consider

φ̂ε(ξ) :=
p
λp

ε‖χ‖L2
χ

ξ− 1
2π

√
b
2

ε


which has ‖φ‖2

L2 =λ and saturates the inequality (3.12) in the sense that

lim
ε→0+

∫
R
|φ̂ε(ξ)|2

∣∣∣∣(2πξ)2 − b

2

∣∣∣∣2

dξ→ 0.
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Thus, inf‖φ‖2
2=λ I [φ] =−λb2

8 . So , we have

−λb2

8
= mb(λ) ≤ 1

2

∫
R
|φ′′(x)|2 −b|φ′|2d x − 1

p +1

∫
R
|φ(x)|p+1d x.

holds for all φwith
∥∥φ∥∥2

2 =λ. Applying this to an arbitrary f and φ :=p
λ

f
‖ f ‖L2

, so that ‖φ‖2
L2 =λ

the following inequality holds

λ
p−1

2 b
p−9

4

p +1

∫
R
| f (x)|p+1d x ≤ 1

2

∥∥ f
∥∥p−1

2

(∫
R
| f ′′(x)|2 −b| f ′(x)|2 + b2

4
| f (x)|2d x

)
for all f 6= 0. This last inequality however contradicts Lemma 6 - for every λ> 0, if p ∈ (1,5) and
for all large enough λ, if p ∈ [5,9). Thus L3 6= 0. Clearly, by Sobolev embedding L1 > 0, L2 > 0,
otherwise L3 must be zero, which previously lead to a contradiction.

�

3.1.3. Strict sub-additivity.

Lemma 8. Let 1 < p < 9 and λ> 0 Then for all α ∈ (0,λ) we have

(3.13) mb(λ) < mb(α)+mb(λ−α).

Proof. First, suppose that 1 < p < 5 and b < 0. Then

mb(λ) = λ

α
inf

‖φ‖2
2=α

{
1

2

∫
R
|φ′′(x)|2 −b|φ′(x)|2d x − (λ/α)

p−1
2

p +1

∫
R
|φ(x)|p+1d x} < λ

α
mb(α),

where the last strict inequality holds because there exists a minimizing sequence for mb(α),
which has the property limk

∥∥φk
∥∥

p+1 > 0. This means that the function λ → mb (λ)
λ is strictly

decreasing. Assuming that α ∈ [λ2 ,λ) (and otherwise we work with λ−α) we get

mb(λ) < λ

α
mb(α) = mb(α)+ λ−α

α
mb(α) ≤ mb(α)+mb(λ−α),

where we have used mb (α)
α ≤ mb (λ−α)

λ−α , since α≥λ−α. This completes the case p ∈ (1,5),b < 0.
Let 5 ≤ p < 9 and b < 0. Note that in this case, mb(x) is zero for small x, by Lemma 3. So, there

are three possibilities:

(1) mb(α) = mb(λ−α) = 0. In this case (3.13) trivially holds, since by assumption mb(λ) < 0.
(2) mb(λ) < 0, but mb(λ−α) = 0. In this case we have

mb(λ) < λ

α
mb(α) = mb(α)+ (

λ

α
−1)mb(α) < mb(α)+mb(λ−α).

(3) When both mb(α),mb(λ−α) are negative, the proof is the same as in the case 1 < p < 5
for b < 0.

Next, we consider the cases when b > 0. In this case for all 1 < p < 5 and all λ> 0 we have that
−∞< mb(λ) < 0. The proof is the same as in the case b < 0, p ∈ (1,5), since we never develop the
complication that mb(λ) = 0 for any λ> 0. The case p ∈ [5,9) and λ>λb,p is similar as well. �
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3.2. Existence of the minimizer. Now, suppose{
1 < p < 5 λ> 0
5 ≤ p < 9 λ>λb,p

so that Lemma 4 and Lemma 7 hold. Let {φk }∞k=1 ⊂ H 2 be a minimizing sequence, i.e.∫
R
|φk |2d x =λ, I [φk ] → mb(λ).

Therefore, by passing to a further subsequence, by Lemma 4 and Lemma 7, we have∥∥φ′′
k

∥∥2
2 → L1 > 0,

∥∥φ′
k

∥∥2
2 → L2 > 0,

∥∥φk
∥∥p+1

Lp+1 → L3 > 0.

Let ρk = |φk |2, so
∫
ρk (x)d x = λ. By the concentration compactness lemma of P.L.Lions (see

Lemma 1.1, [32]), there is a subsequence (denoted again by ρk ), so that at least one of the fol-
lowing is satisfied:

(1) Tightness. There exists yk ∈ R such that for any ε> 0 there exists R(ε) such that for all k∫
B(yk ,R(ε))

ρk d x ≥
∫

R
ρk −ε.

(2) Vanishing. For every R > 0

lim
k→∞

sup
y∈R

∫
B(y,R)

ρk d x = 0.

(3) Dichotomy. There exists α ∈ (0,λ), such that for any ε > 0 there exist R,Rk →∞, yk and
k0 such that

(3.14)

∣∣∣∣∫
B(yk ,R)

ρk d x −α
∣∣∣∣< ε,

∣∣∣∣∫
R<|x−yk |<Rk

ρk d x

∣∣∣∣< ε,

∣∣∣∣∫
Rk<|x−yk |

ρk d x − (λ−α)

∣∣∣∣< ε.

We proceed to rule out the dichotomy and vanishing alternatives, which will leave us with tight-
ness.

3.2.1. Dichotomy is not an option. Assuming dichotomy, we have by (3.14) and
∫
ρk (x)d x = λ

that
∣∣∣∫Rk<|x−yk |ρk d x − (λ−α)

∣∣∣< 2ε. Let ψ1,ψ2 ∈C∞(R), satisfying 0 ≤ψ1,ψ2 ≤ 1 and

ψ1(x) =
{

1, |x| ≤ 1,

0, |x| ≥ 2,
, ψ2(x) =

{
1, |x| ≥ 1,

0, |x| ≤ 1/2,
.

Define φk,1 and φk,2 as follows:

φk,1(x) =φk (x)ψ1

(
x − yk

Rk /5

)
, φk,2(x) =φk (x)ψ2

(
x − yk

Rk

)
.

Clearly, for k large enough we have∣∣∣∣∫
R
φ2

k,1(x)d x −α
∣∣∣∣< 2ε and

∣∣∣∣∫
R
φ2

k,2(x)d x − (λ−α)

∣∣∣∣< 2ε.

In fact, by taking a sequence εk → 0, we can find subsequence of φk,1,φk,2 (denoted again the
same) and sequences {yk }∞k=1 ⊂ R, {Rk }∞k=1 with Rk →∞ as k →∞, such that

(3.15) lim
k→∞

∫
R
|φk,1|2d x =α, lim

k→∞

∫
R

∣∣φk,2
∣∣2 d x =λ−α and

∫
Rk /5<|x−yk |<Rk

|φk |2d x < 1

k
.
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Consider I [φk ]− I [φk,1]− I [φk,2]. Using (3.15) we get

I [φk ]− I [φk,1]− I [φk,2] = 1

2

∫
R
|φ′′

k |2 −b|φ′
k |2d x − 1

p +1

∫
R
|φk |p+1

− 1

2

∫
R

∣∣∣∣(φkψ1

(
x − yk

Rk /5

))′′∣∣∣∣2

−b

∣∣∣∣(φkψ1

(
x − yk

Rk /5

))′∣∣∣∣2

d x + 1

p +1

∫
R

∣∣∣∣(φkψ1

(
x − yk

Rk /5

))∣∣∣∣p+1

− 1

2

∫
R

∣∣∣∣(φkψ2

(
x − yk

Rk

))′′∣∣∣∣2

−b

∣∣∣∣(φkψ2

(
x − yk

Rk

))′∣∣∣∣2

d x + 1

p +1

∫
R

∣∣∣∣(φkψ2

(
x − yk

Rk

))∣∣∣∣p+1

= 1

2

∫
R

(
1−ψ2

1

(
x − yk

Rk /5

)
−ψ2

2

(
x − yk

Rk

))[
|φ′′

k (x)|2 − b

2
|φ′

k (x)|2
]

d x+

+ 1

p +1

∫
R
|φk (x)|p+1

(
ψ

p+1
1

(
x − yk

Rk /5

)
+ψp+1

2

(
x − yk

Rk

)
−1

)
d x +Ek .

The error term Ek , contains only terms having at least one derivative on the cutoff functions,
therefore generating R−1

k . At the same time, there is at most one derivative falling on the φk . So,
we can estimate these terms away as follows

|Ek | ≤
C

Rk

∫
Rk /5<|x|<2Rk

(|φk (x)|2 +|φ′
k (x)|2)d x ≤ C

Rk
‖φk‖L2 (‖φk‖L2 +‖φ′′

k‖L2 ).

Since supk ‖φk‖L2 , supk ‖φ′′
k‖L2 <∞, we conclude that limk Ek = 0. For the next term, we have

the positivity relation
∫

R

(
1−ψ2

1

(
x−yk
Rk /5

)
−ψ2

2

(
x−yk

Rk

))
|φ′′

k (x)|2d x > 0. Integration by parts yields∫
R

(
1−ψ2

1

(
x − yk

Rk /5

)
−ψ2

2

(
x − yk

Rk

))
|φ′

k (x)|2d x =

= −
∫

R
φk (x)

d

d x
[

(
1−ψ2

1

(
x − yk

Rk /5

)
−ψ2

2

(
x − yk

Rk

))
φ′

k (x)]d x

Thus, by Hölder’s inequality

|
∫

R

(
1−ψ2

1

(
x − yk

Rk /5

)
−ψ2

2

(
x − yk

Rk

))
|φ′

k (x)|2d x| ≤

≤ C‖φ′′
k‖L2‖φk‖L2(Rk /5<|·|<Rk ) +

C

Rk
‖φ′

k‖L2‖φk‖L2 .

Note that since Rk → ∞ and on the other hand ‖φk‖H 2 is uniformly bounded in k, this term
goes to zero, by the last estimate in (3.15). Finally,

|
∫

R
|φk (x)|p+1

(
ψ

p+1
1

(
x − yk

Rk /5

)
+ψp+1

2

(
x − yk

Rk

)
−1

)
d x| ≤

∫
Rk /5<|x−yk |<Rk

|φk (x)|p+1d x.

Since by GNS ∫
Rk /5<|x−yk |<Rk

|φk (x)|p+1d x ≤C‖φ′′
k‖

p−1
4

L2 ‖φk‖
3p+5

4

L2(Rk /5<|·|<Rk )
,

and ‖φ′′
k‖L2 is uniformly bounded in k, we conclude that this term also goes to zero as k →∞.

It follows that

(3.16) liminf
k→∞

[
I [φk ]− I [φk,1]− I [φk,2]

]≥ 0.
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Now, let {ak }∞k=1 and {bk }∞k=1 be sequences such that
∥∥akφk,1

∥∥2
2 = α,

∥∥bkφk,2
∥∥2

2 = λ−α. Note
that ak ,bk → 1. Using (3.16), there is βk : limk βk = 0, so that

I [φk ] ≥ I [φk,1]+ I [φk,2]+βk

≥ I [akφk,1]+ I [bkφk,2]+βk −C (|1−ak |+ |1−bk |)
≥ mb(α)+mb(λ−α)+βk −C (|1−ak |+ |1−bk |).

where we have used that supk ‖φk‖H 2 <∞, the estimate |I (φ)−I (aφ)| ≤C (‖φ‖H 2 )|1−a| (which is
a direct consequence of the definition of the functional I [·]) and the definition of mb(z). Taking
limits in k, we see that

mb(λ) = lim
k

I [φk ] ≥ mb(α)+mb(λ−α),

which is a contradiction with the sub-additiivity of mb(·) established in Lemma 8. So, dichotomy
cannot occur.

3.2.2. Vanishing does not occur. Suppose vanishing occurs and ε> 0. Let φ ∈C∞ be such that

η(x) =
{

1, |x| ≤ 1,

0, |x| ≥ 2.

Using GNS we have for all R and y ∈ R

‖φk‖p+1
Lp+1(B(y,R)) ≤

∫
B(y,R)

|φk |p+1d x ≤
∫

R

∣∣∣φkη
(x − y

R

)∣∣∣p+1
d x

≤
∥∥∥(
φkη

(x − y

R

))′′∥∥∥ p−1
4

L2(R)

∥∥φk
∥∥ 3p+5

4

L2(B(y,2R))
≤Cη,R

∥∥φk
∥∥ 3p+5

4

L2(B(y,2R))
.

We can cover R with balls of radius 2 such that every point is contained in at most 3 balls, let it
be {B(y j ,2)}. Moreover, we can choose these balls so that {B(y j ,1)} still covers R. Choose N ∈ N
so large that for all k > N , ∫

B(y,2)
|φk |2d x < ε,

for all y ∈ R. We can estimate the Lp+1(R) norm of φk as follows∥∥φk
∥∥p+1

Lp+1(R)
≤

∞∑
j=1

∫
B(y j ,1)

|φk |p+1d x ≤
∞∑

j=1
Cη,R

∥∥φk
∥∥2

L2(B(y j ,2))

∥∥φk
∥∥ 3p−3

4

L2(B(y j ,2))
≤ 3Cη,Rε

3p−3
4

∥∥φk
∥∥2

L2(R) .

So, we get that
∥∥φk

∥∥p+1
Lp+1(R)

→ 0 as k → ∞ which is a contradiction. Therefore, the sequence

ρk = |φk |2 is tight.

3.2.3. Existence of the minimizer. We have that there exists a sequence {yk }∞k=1 such that for all
ε> 0 there exists R(ε) such that ∫

|x|>R(ε)
|φk (yk +x)|2d x < ε.

Define uk (x) := φk (yk + x). The sequence {uk }∞k=1 ⊂ H 2 is bounded, therefore there exists a
weakly convergent subsequence( renamed to {uk }∞k=1), say, to u ∈ H 2 . By the tightness and the
compactness criterion on L2(Rn), the sequence {uk }∞k=1 has a strongly convergent subsequence
in L2(R), say, to ũ ∈ H 2. Since weak convergence on H 2 implies weak convergence on L2, we
have that u = ũ by uniqueness of weak limits. In addition, ‖u‖2

L2 = limk ‖uk‖2
L2 =λ, so u satisfies

the constraint.
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We also have that uk converges to u in Lp+1 norm. Indeed, using GNS inequality we get

‖uk −u‖Lp+1(R) ≤
∥∥(uk −u)′′

∥∥ p−1
4(p+1)

L2(R)
‖uk −u‖1− p−1

4(p+1)

L2(R)

≤C ‖uk −u‖1− p−1
4(p+1)

L2(R)
→ 0 as k →∞.

Also, since

‖u′
k −u′‖2

L2 ≤ ‖u′′
k −u′′‖L2‖uk −u‖L2 ≤ (‖u′′

k‖L2 +‖u′′‖L2 )‖uk −u‖L2 ,

we conclude that limk ‖u′
k −u′‖L2 = 0, and in addition limk

∫
(u′

k (x))2d x → ∫
(u′(x))2d x.

Finally, by the lower semicontinuity of the L2 norm with respect to weak convergence, we
have liminfk

∫
R |u′′

k |2 ≥
∫

R |u′′|2. We conclude that

liminf
k

1

2

∫
R
|u′′

k |2 −b|u′
k |2d x − 1

p +1

∫
R
|uk |p+1d x ≥ 1

2

∫
R
|u′′|2 −b|u′|2d x − 1

p +1

∫
R
|u|p+1d x,

whence we have that mb(λ) ≥ I [u], therefore I (u) = mb(λ) and u is a minimizer.

3.3. Euler-Lagrange equation.

Proposition 2. Let p ∈ (1,9),λ> 0, be so that

• 1 < p < 5,λ> 0
• 5 ≤ p < 9,λ>λb,p > 0.

Then, there exists a function ω(λ) > 0, so that the minimizer of the constrained minimization
problem (1.8) φ=φλ constructed in Section 3.2.3, satisfies the Euler-Lagrange equation

(3.17) φ′′′′
λ +bφ′′

λ−|φλ|p−1φλ+ω(λ)φλ = 0

where

ω(λ) = 1

λ

∫
R

b(φ′
λ)2 +|φλ|p+1 − (φ′′

λ)2d x.

In addition, n(L+) = 1, that is L+ has exactly one negative eigenvalue. In fact L+|{φλ}⊥ ≥ 0.

Proof. We have shown that minimizers for the constrained minimization problem exists in the
two cases described above, for both b > 0 and b < 0.

Consider uδ =
p
λ

φλ+δh
‖φλ+δh‖ , where h is a test function. Note that ‖uδ‖2

L2 = λ, so it satisfies the

constraint. Expanding I [uδ] in powers of δ we obtain

I [uδ] = mb(λ)+

+δ
[∫

R
φ′′
λh′′−bh′φ′

λ−h|φλ|p−1φλd x + 1

λ

∫
R

b(φ′
λ)2 +|φλ|p+1 − (φ′′

λ)2d x
∫

R
φλhd x

]
+ δ2

2

[∫
R

(h′′)2 −b(h′)2 −ph2
∣∣φλ∣∣p−1 d x

]
+ δ2

λ
〈h,φ〉

∫
R

(p +1)h|φ|p−1φ+2bh′φ′
λ−2h′′φ′′

λd x

+ δ2

2λ2
〈h,φ〉2

∫
R

(p +3)
∣∣φλ∣∣p+1 +4b(φ′

λ)2 −4(φ′′
λ)2d x+

+ δ2

2λ
‖h‖2

∫
R

∣∣φλ∣∣p+1 +b(φ′
λ)2 − (φ′′

λ)2d x +O(δ3).
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Using only the first order in δ information and the fact that I [uδ] ≥ mb(λ) for all δ ∈ R, we
conclude that

〈φλ,h′′′′〉+b〈φλ,h′′〉−〈|φλ|p−1φλ+ω(λ)φλ,h〉 = 0

where ω(λ) = 1
λ

∫
R b(φ′

λ
)2 +|φλ|p+1 − (φ′′

λ
)2d x. Since this is true for any test function h, we con-

clude that φλ is a distributional solution of the Euler-Lagrange equation (3.17). According to
Proposition 1, this turns out to be a solution in stronger sense, in particular φλ ∈ H 4(R).

Now, using the fact that the function gh(δ) := I [uδ] has a minimum at zero, we also conclude
that g ′′

h(0) ≥ 0. This is of course valid for all h, but in order to simplify the expression, we only
look at h : ‖h‖ = 1, which are orthogonal to the wave φλ, i.e. 〈h,φλ〉 = 0. This implies that

〈h′′′′+bh′′+ω(λ)h −p|φλ|p−1h,h〉 ≥ 0.

In other words, 〈L+h,h〉 ≥ 0, whenever h : ‖h‖ = 1,〈h,φλ〉 = 0. This is exactly the claim that
L+|{φλ}⊥ ≥ 0. In particular, this implies that the second smallest eigenvalue of L+ is non-

negative or n(L+) ≤ 1. On the other hand, since 〈L+φλ,φλ〉 = −(p − 1)
∫ |φλ(x)|p+1d x < 0, it

follows that there is a negative eigenvalue or n(L+) = 1. �

4. VARIATIONAL CONSTRUCTION IN HIGHER DIMENSIONS

In this section, we follow the approach and constructions from Section 3. Most, if not all, of
the steps go through essentially unchanged, save for the numerology, which is of course im-
pacted by the dimension d . Thus, we will be just indicating the main points, without providing
full details, where the arguments follow closely the one dimensional case.

Recall that we work with the variational problem (1.11). Again, we introduce

mb(λ) = inf
φ∈H 2∩Lp+1,‖φ‖2

2=λ
I [φ].

Note that since

(4.1)
mb(λ)

λ
= inf
‖φ‖2

2=1

{
1

2

∫
Rd

[|∆φ(x)|2 −ε|~b|2|∂x1φ(x)|2]d x − λ
p−1

2

p +1

∫
Rd

|φ(x)|p+1d x

}
,

the function λ→ mb (λ)
λ

is non-increasing, we conclude that mb(λ) is differentiable a.e. As we
have previously discussed, the case ε = 1 seems much more technically complicated, and it is
to be addressed in a subsequent publication [27].

We concentrate on the case ε=−1. We have the following regarding m~b,λ.

Lemma 9. Let ε=−1. Then,

• For p ∈ (1,1+ 8
d+1 ) and λ> 0, we have that −∞< m~b(λ) < 0,

• For p ∈ (1,1+ 8
d ), m~b(λ) >−∞,

• For p ≥ 1+ 8
d , m~b,λ =−∞ for all λ> 0.

Proof. The proof goes through the same steps as in Lemma 2. Pick φδ = δ
d+1

2 φ(δ2x1,δx ′), with
‖φ‖2

L2 =λ. Clearly, ‖φδ‖2
L2 =λ, while

I [φδ] =
δ4‖∆′φ‖2 +δ8‖∂x1x1φ‖2

L2

2
+ |~b|2‖φx1‖2

2
δ4 −

‖φ‖p+1
Lp+1

p +1
δ

(d+1)(p−1)
2 .
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Clearly, for δ small enough and p < 1+ 8
d+1 , the last term is dominant, so mb(λ) < 0. Similarly,

using ψδ = δ d
2 φ(δx) we obtain

I [ψδ] = δ4
∥∥∆φ∥∥2 +δ2|~b|2 ∥∥φx1

∥∥2

2
−

∥∥φ∥∥Lp+1

p+1

p +1
δ

d(p−1)
2 ,

and taking the limit δ→∞ yields mb(λ) =−∞, for p > 1+ 8
d .

Next, by GNS, we have that

‖φ‖Lp+1(Rd ) ≤Cp‖φ‖
Ḣ

d( 1
2 − 1

p+1 ) ≤Cp‖φ‖
1−d( 1

4− 1
2(p+1) )

L2 ‖∆φ‖d( 1
4− 1

2(p+1) )

L2 .

Thus,

I [φ] = 1

2

∫
Rd

[|∆φ(x)|2 +|~b|2|∂x1φ(x)|2]d x − 1

p +1

∫
Rd

|φ(x)|p+1d x

≥ 1

2

∫
Rd

|∆φ|2 +|~b|2|∂x1φ(x)|2d x − cp‖∆φ‖d p−1
4

L2 ‖φ‖p+1−d p−1
4

L2

≥ 1

4
‖∆φ‖2

L2 − cp,λ,b‖∆φ‖d p−1
4

L2 ≥−γ,

where in the last inequality, we have used that p < 1+ 8
d (whence d p−1

4 < 2) and hence ‖∆φ‖2
L2 is

dominant. The fact that mb(λ) =−∞, when p = 1+ 8
d follows in the same fashion as in Lemma

2. �

Next, we present a technical lemma.

Lemma 10. For 1+ 8
d+1 ≤ p < 1+ 8

d , there is Cp , so that for all functions g ,

(4.2) ‖g‖p+1

Lp+1(Rd )
≤Cp‖g‖p−1

L2

∫
Rd

|∆g |2 +|∂x1 g |2d x

For p ∈ (1,1+ 8
d+1 ), such an estimate cannot hold.

Proof. We apply the Sobolev embedding in the variables x1 and then in x ′ = (x2, . . . , xd )

(4.3) ‖g‖Lp+1(Rd ). ‖|∇x ′ |(d−1)( 1
2− 1

p+1 )|∇x1 |(
1
2− 1

p+1 )g‖L2(Rd ).

Next, by Plancherel’s, Hölder’s inequality and Young’s inequality

‖|∇x ′ |(d−1)( 1
2− 1

p+1 )|∇x1 |(
1
2− 1

p+1 )g‖L2(Rd ) =
(∫

Rd
|ĝ (ξ)|2|ξ′|(d−1)(1− 2

p+1 )|ξ1|1−
2

p+1 dξ

)1/2

. ‖g‖
p−1
p+1

L2

(∫
Rd

|ĝ (ξ)|2|ξ′|(d−1) p−1
2 |ξ1|

p−1
2 dξ

) 1
p+1

. ‖g‖
p−1
p+1

L2

(∫
Rd

|ĝ (ξ)|2[|ξ′|4 +|ξ1|
q′(p−1)

2 ]dξ

) 1
p+1

,

where q = 8
(d−1)(p−1) . Clearly, (4.2) follows, provided 2 ≤ q ′(p−1)

2 ≤ 4. Solving this inequality yields

exactly 1+ 8
d+1 ≤ p < 1+ 8

d .
If p < 1+ 8

d+1 , take φ=χ(ε2x1,εx ′) in (4.2). Assuming the validity of (4.2), we obtain a contra-
diction for ε<< 1. �

The next two lemmas are the generalizations of Lemma 3 and Lemma 4 to higher dimensions.

Lemma 11. If ε=−1 and p ∈ [1+ 8
d+1 ,1+ 8

d ), then there exists a finite number λ~b,p > 0 such that

• for all λ≤λ~b,p we have mb(λ) = 0,
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• for all λ>λp we have −∞< mb(λ) < 0.

Proof. The inequality m(λ) ≤ 0 follows in the same way as in Lemma 3. Then, by Lemma 10, we
have

(4.4) inf
φ6=0

‖φ‖p−1
L2

∫
Rd [|∆φ|2 −ε|~b|2|φx1 |2]d x∫

Rd |φ|p+1d x
≥ c~b,p > 0.

Thus, for all φ ∈ H 2(Rd ), we have∫
Rd

[|∆φ|2 −ε|~b|2|φx1 |2]d x −
c~bp

λp−1

∫
Rd

|φ|p+1d x ≥ 0,

which by (4.1) implies that for λ ≤ λ~b,p :=
(

c~b,p (p+1)

2

) 2
p−1

, m~b(λ) ≥ 0. Since we always have the

opposite inequality, this implies m~b(λ) = 0, when λ is small enough. Note that for very large λ,
the quantity in (4.1) is clearly negative, so this implies that λ~b,p <∞. �

The next lemma is the generalization of Lemma 4 to the higher dimensional case. Its proof
follows an identical arguments and it is thus omitted.

Lemma 12. Suppose ε=−1, p ∈ (1,1+ 8
d ) and −∞< mb(λ) < 0. That is

• p ∈ (1,1+ 8
d+1 ),λ> 0

• p ∈ [1+ 8
d+1 ,1+ 8

d ) and λ>λ~b,p .

Let φk be a minimizing sequence for the constrained minimization problem (1.11). Then, there
exists a subsequence φk such that:∫

Rd
|∆φk (x)|2d x → L1,

∫
Rd

|∂x1φk (x)|2d x → L2,
∫

Rd
|φk (x)|p+1d x → L3,

where L1 > 0, L2 > 0 and L3 > 0.

4.1. Existence of minimizers. Before we go ahead with the existence of minimizers, we need
an analog of Lemma 8. Their proofs in the higher dimensional case goes in an identical manner.

Lemma 13. Let 1 < p < 1+ 8
d and λ > 0. Then λ→ m~b,p (λ) is strictly subadditive. That is, for

every α ∈ (0,λ),
m~b,p (λ) < m~b,p (α)+m~b,p (λ−α)

In addition, λ→ m~b,p (λ) is twice differentiable a.e.

With the basic results in place, we can now proceed to establish the existence of the minimiz-
ers of (1.11). Supposing {

1 < p < 1+ 8
d+1 λ> 0

1+ 8
d+1 ≤ p < 1+ 8

d λ>λb,p

we take a minimizing sequence {φk } ⊂ H 2(Rd ), with I [φk ] → m~b,p (λ). By eventually passing to
a subsequence, we can without loss of generality assume, by using Lemma 12,

1

2

∫
Rd

|∆φnk (x)|2 → L1,
∫

Rd
|∂x1φnk (x)|2 → L2 and

∫
Rd

|φnk |p+1d x → L3,

where15 L1 > 0, L2 > 0 and L3 > 0. The next task is to show that this sequence does not split nor
vanish. The absence of splitting is established in the same way as the first part of Section 3.2.

15For conciseness, we use φk , instead of φnk
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Next, we rule out vanishing. The proof presented in Section 3.2 works for d = 1,2,3,4, but
breaks down in d ≥ 5, so let us present another one that works in all dimensions. More con-
cretely, for all R > 0 and y ∈ Rd and a cutoff function η introduced in Section 3.2.2, we have by
the GNS inequality

‖φk‖p+1
Lp+1(B(y,R))

≤
∫

Rd
|φk (x)η

( |x − y |
R

)
|p+1d x . ‖φkηR‖p+1

Ḣ
d

(
1
2 − 1

p+1

) .

. ‖∆[φkηR ]‖(p+1) d
2

(
1
2− 1

p+1

)
L2 ‖φkηR‖

(p+1)−(p+1) d
2

(
1
2− 1

p+1

)
L2

Since p < 1 + 8
d , it follows that (p + 1) d

2

(
1
2 − 1

p+1

)
< 2. In addition ‖φkηR‖L2 ≤ ‖φk‖L2(B(y,2R),

whence
‖φk‖p+1

Lp+1(B(y,R))
≤CR,η‖φk‖2

H 2(B(y,2R))‖φk‖p−1
L2(B(y,2R))

.

So, if we assume that vanishing occurs, then for every ε > 0, we will be able to cover Rd with
balls of radius 1, say B(y j ,1), so that

∫
B(y j ,3) |φk (x)|2d x < ε. Then,

∥∥φk
∥∥p+1

Lp+1(Rd )
≤

∞∑
j=1

∫
B(y j ,1)

|φk |p+1d x ≤
∞∑

j=1
Cη,R

∥∥φk
∥∥2

H 2(B(y j ,2))

∥∥φk
∥∥p−1

L2(B(y j ,2))
≤

≤ 10Cη,Rε
p−1

2
∥∥φk

∥∥2
H 2(Rd ) .

Clearly, since
∥∥φk

∥∥
H 2(Rd ) is uniformly bounded in k, we conclude that ‖φk‖Lp+1 → 0, which is in

a contradiction with limk
∫

Rd |φk |p+1d x → L3 > 0.
From here, it follows that the sequence ρk = |φk (x)|2 is tight and the existence of the mini-

mizer is done as in Section 3.2.3.
The Euler-Lagrange equation, together with the appropriate properties of the linearized op-

erators is done similar to Proposition 2.

Proposition 3. Let p ∈ (1,1+ 8
d ),λ> 0, be so that

• 1 < p < 1+ 8
d+1 ,λ> 0

• 1+ 8
d+1 ≤ p < 1+ 8

d ,λ>λb,p > 0.

Then, there exists a function ω(λ) > 0, so that the minimizer of the constrained minimization
problem (1.11) φ=φλ satisfies the Euler-Lagrange equation

(4.5) ∆2φλ+ε|~b|2∂2
x1
φλ−|φλ|p−1φλ+ω(λ)φλ = 0

In addition, n(L+) = 1, that is L+ has exactly one negative eigenvalue. Finally, L− ≥ 0, with a
simple eigenfunction at zero, i.e. K er [L−] = span[φλ].

As we mentioned above, the proof goes along the lines of Proposition 2. The only new el-
ement are the statements about L−, which we now prove. Note that by direct inspection,
L−[φλ] = 0, by (4.5), so zero is an eigenvalue. Assuming that there is a negative eigenvalue,
say L−[ψ] =−σ2ψ,‖ψ‖ = 1, we clearly would have ψ⊥φλ. In addition, since16 L+ <L−,

〈L+ψ,ψ〉 < 〈L−ψ,ψ〉 =−σ2

〈L+φλ,φλ〉 < 0.

16This is an obvious statement, once we realize that φλ cannot vanish on an interval. Indeed, otherwise, since
it solves the fourth order equation (4.5), it follows that φλ is trivial, which it is not.
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This would force n(L+) ≥ 2, a contradiction. Thus, L− ≥ 0. Finally, 0 is a simple eigenvalue of
L− along the same line of reasoning. Indeed, take ψ : L−ψ = 0,ψ ⊥ φλ. Again, we conclude
n(L+) ≥ 2, which leads to a contradiction.

4.2. Discussion of the proof of Theorem 4: existence of the waves. We do not provide an ex-
tensive review of the existence claims in Theorem 4 ,as this would be repetitious, but we would
like to make a few notable points. We work with the variational problem (1.12), where we set up
b =−1 for simplicity as this will not affect the calculations.

Our goal in this section is to clarify the range of indices in p. More concretely, we have the
following analogue of Lemmas 10.

Lemma 14. For 1+ 4
d ≤ p < 1+ 8

d ,

(4.6) ‖g‖p+1

Lp+1(Rd )
≤Cp‖g‖p−1

L2

∫
Rd

|∆g |2 +|∇g |2d x

For p ∈ (1,1+ 4
d ), such an estimate cannot hold.

The proof proceeds in a similar fashion, so we omit it. A combination of arguments in the
flavor of the proofs for Lemma 9 and Lemma 11 leads us to the following variant of Lemma 11
and Lemma 12.

Lemma 15. If b < 0 and p ∈ [1+ 4
d ,1+ 8

d ), then there exists a finite number λb,p > 0 so that

• for all λ≤λb,p we have mb(λ) = 0,
• for all λ>λp we have −∞< mb(λ) < 0.

In addition, assuming that −∞< mb(λ) < 0, that is

• p ∈ (1,1+ 4
d ),λ> 0

• p ∈ [1+ 4
d ,1+ 8

d ) and λ>λb,p .

and φk be a minimizing sequence for the constrained minimization problem (1.11), there exists
a subsequence φk such that:∫

Rd
|∆φk (x)|2d x → L1,

∫
Rd

|∇φk (x)|2d x → L2,
∫

Rd
|φk (x)|p+1d x → L3,

where L1 > 0, L2 > 0 and L3 > 0.

With these tools at hand, the existence of the waves follows in the same manner as before, so
we omit the details.

5. STABILITY OF THE NORMALIZED WAVES

Interestingly, the proof of the spectral stability proceeds by a common argument, both for the
Kawahara and the fourth order NLS case. By Proposition 1, it suffices to show that n(L+) = 1,
L− ≥ 0, φλ ⊥ K er [L+] and to verify that the index 〈L −1+ φλ,φλ〉 < 0. Indeed, the condition
n(L+) = 1 was already verified as part of the variational construction, see Proposition 2 and 3.
Similarly, L− ≥ 0 was verified in the higher dimensional case in Proposition 3.



GROUND STATES FOR THE KAWAHARA EQUATION 29

5.1. Weak non-degeneracy and non-positivity of the Vakhitov-Kolokolov quantity.

Lemma 16. For each constrained minimizer φλ, we have that φλ⊥ K er [L+].

Proof. Take any element of K er [L+], say Ψ : ‖Ψ‖L2 = 1. We need to show 〈Ψ,φλ〉 = 0. To this
end, consider Ψ−‖φλ‖−2〈Ψ,φλ〉φλ ⊥ φλ. Recall that due to the construction L+|{φλ}⊥ ≥ 0. We
have

0 ≤ 〈L+[Ψ−‖φλ‖−2〈Ψ,φλ〉φλλ],Ψ−‖φλ‖−2〈Ψ,φλ〉φλ〉 = ‖φλ‖−4〈Ψ,φλ〉2〈L+φλ,φλ〉 ≤ 0,

where we have used that 〈L+φλ,φλ〉 = −(p − 1)
∫ |φλ|p+1 < 0. The only way the last chains of

inequalities is non-contradictory, is if 〈Ψ,φλ〉 = 0, which is the claim. �

Our next result is a general lemma, which is of independent interest.

Lemma 17. Suppose that H is a self-adjoint operator on a Hilbert space X , so that H |{ξ0}⊥ ≥ 0.
Next, assume ξ0 ⊥ K er [H ], so that H −1ξ0 is well-defined. Finally, assume 〈H ξ0,ξ0〉 ≤ 0. Then

〈H −1ξ0,ξ0〉 ≤ 0.

Proof. We can without loss of generality assume that ‖ξ0‖ = 1. Consider H −1ξ0−〈H −1ξ0,ξ0〉ξ0 ⊥
ξ0. It follows that

0 ≤ 〈H [H −1ξ0 −〈H −1ξ0,ξ0〉ξ0],H −1ξ0 −〈H −1ξ0,ξ0〉ξ0〉 =
= 〈ξ0 −〈H −1ξ0,ξ0〉H ξ0,H −1ξ0 −〈H −1ξ0,ξ0〉ξ0〉 =
= −〈H −1ξ0,ξ0〉〈H ξ0,H −1ξ0〉+〈H −1ξ0,ξ0〉2〈H ξ0,ξ0〉 =
= −〈H −1ξ0,ξ0〉+〈H −1ξ0,ξ0〉2〈H ξ0,ξ0〉 ≤−〈H −1ξ0,ξ0〉,

where we have used the assumption 〈H ξ0,ξ0〉 ≤ 0. It follows that 〈H −1ξ0,ξ0〉 ≤ 0, which is the
claim. �

Remark: Unfortunately, it is impossible to conclude that 〈H −1ξ0,ξ0〉 < 0, based on the as-
sumptions made in Lemma 17. It turns out that such a statement is in general false, that is it is
in general impossible to rule out 〈H −1ξ0,ξ0〉 6= 0.

To that end, consider the following example17: Take H = R2 and H =
( −1 1

1 0

)
, ξ0 =

(
1
0

)
,

which has K er [H ] = {0}, 〈H ξ0,ξ0〉 = −1 < 0, while 〈H −1ξ0,ξ0〉 = 0. Nevertheless, we always
have 〈H −1ξ0,ξ0〉 ≤ 0 as claimed in Lemma 17.

5.2. Conclusion of the proof of spectral stability. Apply Lemma 17 to the vector ξ0 := φλ and
the operator H :=L+. Recall that as a byproduct of the construction ofφλ, we have established
the property L+|{φλ}⊥ ≥ 0. By Lemma 16, we have that φλ ⊥ K er [L+]. Finally, 〈L+φλ,φλ〉 < 0

was established as well (and used repeatedly throughout). Thus, we conclude that 〈L −1+ φλ,φλ〉 ≤
0. Clearly, our additional assumption, namely 〈L −1+ φλ,φλ〉 6= 0 guarantees that 〈L −1+ φλ,φλ〉 <
0, which is enough for the spectral stability by Corollary 1. It would be interesting to see whether
one can prove 〈L −1+ φλ,φλ〉 6= 0 in a straightforward manner, instead of making it an extra re-
quirement.

These arguments establish rigorously the spectral stability of the waves for the Kawahara
made in Theorem 2 and in the high dimensional fourth order NLS problems in Theorem 3 and
Theorem 4.

17We owe this to a generous remark made by an anonymous referee in response to our initial claims to the
contrary.
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