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ABSTRACT. For each λ> 0 and under necessary conditions on the parameters, we construct nor-
malized waves for second order PDE’s with mixed power non-linearities, with ‖u‖2

L2(Rn )
=λ,n ≥ 1.

We show that these are bell-shaped smooth and localized functions, and we compute their pre-
cise asymptotics. We study the question for the smoothness of the Lagrange multiplier with re-
spect to the L2 norm of the waves, namely the map λ→ ωλ, a classical problem related to its
stability. We show that this is intimately related to the question for the non-degeneracy of the
said solitons. We provide a wide class of non-linearities, for which the waves are non-degenerate.
Under some minimal extra assumptions, we show that a.e. in λ, the map λ→ fωλ is differentiable
and the waves e iωλt fωλ are spectrally (and in some cases orbitally) stable as solutions to the NLS
equation. Similar results are obtained for the same waves, as traveling waves of the Zakharov-
Kuznetsov system.

1. INTRODUCTION

We consider the Schrödinger equation with general Hamiltonian non-linearity

(1.1) i ut +∆u +F (|u|2)u = 0, u : R+×Rn → C,

where F : R+ → R will be henceforth assumed to be C 1(R+) function. These type of models are
ubiquitous in current applications (especially in quantum mechanical context, such as non-
linear optics and additionally in the theory of water waves). Of particular importance of the
theory and applications to physics and technology, is the study of the existence and properties
of ground states, that is, standing wave solutions in the form e iωt fω, where fω > 0. Clearly, they
satisfy the elliptic profile equation

(1.2) −∆ fω+ω fω−F ( f 2
ω) fω = 0.

The existence of solutions of (1.2), together with their properties, including their uniqueness
has been the subject of hundreds of papers in the literature, we refer the reader to the landmark
papers, [2], [20], [34] and for some recent developments to the review paper [36].

In addition, and somewhat in parallel of the study of the solitary waves, various mathematical
aspects of the theory have been rigorously established in the literature - such as conditions
on the parameters guaranteeing local and global well-posedness, asymptotic properties of the
solutions etc. We do not even attempt to review these here, instead we refer to the excellent
(and by now classical) books, [5] and [35].

More recently, more advanced topics of investigations have been concerned with the ques-
tions of the global dynamics of these models. In these studies (and in many previous works), it
became clear that the behavior near solitary waves is of utmost importance. In particular, we
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should mention the soliton resolution conjecture (SRC), which predicts that if the system does
not support unstable solitons, any sufficiently smooth and localized data, produces a global
solution which resolves, as t → ∞, into a solitonic part plus a radiation term. This has been
established in a variety of NLS models, in different dimensions and specific non-linearities in
the form F (z) = zp . The SRC is otherwise widely believed to hold true, at least in very generic
circumstances. Important advances were made towards that goal in that various dispersive es-
timates for the Schrödinger evolution, [9], we also refer to [6, 33, 32] for further related issues
and discussions.

As one can see from the recent developments - the existence, functional and most impor-
tantly stability properties of the solitons are really a starting point towards an attempt at under-
standing the global dynamic of a model like (1.1). It should be mentioned though, as this will be
the focus of this paper, that the cases outside of the simple power non-linearity, that is F (z) = zp ,
have not been well-understood at all - at least from point of view of existence and stability of the
corresponding solitary waves. Clearly, this is an important question, both from a theoretical and
practical point of view.

As an example of a model of this type, which naturally appears in the shallow water waves
approximation models is the Gardner equation, which features cubic and quintic terms, or in
terms of F , F (z) = az ±bz2, a,b > 0. One should note that this is a model in one spatial dimen-
sion, where the profile equation (1.2) allows reduction of order. In fact, it should be pointed
out that matters in this particular case, that is n = 1 are more or less fully understood1. For the
one dimensional case, in the paper [14], under pretty general conditions on the non-linearity
F , the authors have established the existence of ground state waves. In addition, the stability
of such waves was reduced to a sign of an explicit quadrature involving the nonlinearity F . As
this condition is very non-explicit (even for simple combinations of two powers), Ohta, [29], fol-
lowed by Maeda, [25], have further studied the conditions for power nonlinearities of the form
F (z) = azp ± bzq . They discovered an interesting new paradigm, namely that even for fixed
a,b, p, q , the stability of the waves fω, may change with ω. This is a complete departure from
the case of a single power non-linearity, F (z) = zp , since the stability in such a case happens ex-
actly for p : 0 < p < 2, and then for all values of ω. In fact, we provide a quick and self-contained
introduction to the existence and stability of the waves in one spatial dimension - see Appendix
C.

The purpose of this work is to examine these questions for general power non-linearities, in
high dimensions, n ≥ 2. We work with power functions of the form

F (r ) =
K∑

k=1
ak r pk −

L∑
l=1

bl r ql , 0 < p1 < . . . < pK , a1, . . . , aK > 0; q1 < . . . < qL ;b1, . . . ,bL > 0.

Within this class, we require that we work with nonlinearities with at least one focusing term,
that is K ≥ 1. There are several reasons in favor of working with explicit power functions. One
reason is to avoid imposing hard to verify conditions on F . A second one is to be able to illus-
trate the results better - including how they stack up against the standard threshold results for
stability, non-degeneracy2 among others.

In closing of the introductory remarks, let us point out that our results for NLS will transfer
nicely to the Zakharov-Kuznetsov equation. This is a higher dimensional version of the KdV

1in the periodic case, the theory is slightly more technical, due to the appearance of an additional integration
constant, but the theory goes through.

2to be defined shortly
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equation, and more precisely,

(1.3) ut +∂x1 (∆u +F (u2)u) = 0, u : R+×Rn → R

The problem was initially derived in three spatial dimensions (and quadratic nonlinearity) by
Zakharov and Kuznetsov, [37] to describe weakly magnetized ion-acoustic waves in a strongly
magnetized plasma, but later found applications in two spatial dimensions as well, [26, 27].
Finally, in [21], the equation was derived from the Euler-Poisson system with magnetic field in
the long wave limit approximation.

Here, we consider waves, traveling in the direction of x1, with a speed of ω. In other words,
we impose the traveling wave ansatz, u(x, t ) = fω(x1 −ωt , x2, . . . , xn). After plugging in (1.3) and
taking into account that fω is vanishing at infinity, we obtain the same profile equation (1.2).

1.1. The linearized problem. In this section, we consider the linearized problems and intro-
duce the relevant notions of stability. Taking the ansatz u = e iωt [ fω+ v(t , ·)] into the NLS prob-
lem (1.1), we obtain, after ignoring O(v2) terms,

(1.4)

(
v1

v2

)
t
=

(
0 1
−1 0

)(
L+ 0

0 L−

)(
v1

v2

)
=: JL~v

where v = v1 + i v2, and the self-adjoint operators, L± (with D(L±) = H 2(Rn)) are given by

L− := −∆+ω−F ( f 2
ω)

L+ := −∆+ω−F ( f 2
ω)−2F ′( f 2

ω) f 2
ω

Applying the ansatz u = fω(x1−ωt , x ′)+v(t , x1−ωt , x ′) in the Zakharov-Kuznetsov model, (1.3),
we arrive at the linearized problem

(1.5) vt = ∂x1L+v.

It is immediate that by (1.2), L−[ fω] = 0, while taking a derivative in any x j , j = 1, . . . ,n results3

in L+[∂ j fω] = 0, j = 1, . . . ,n. Actually, from Nöther’s principle, all elements of4 K er [L ] arising
out of the known symmetries of the system - translational and modulational, are accounted for.
Still, it is unclear whether these are all elements of K er [L ]. While it is usually pretty easy to
establish that zero is the bottom of the spectrum for L−, whence zero is a simple eigenvalue
spanned by fω, (see Theorem 3 below), the fact that K er [L+] is spanned by ∇ fω is not straight-
forward and it is an open question in a surprising number of applications. In fact, we shall
introduce an intermediate property.

Definition 1. We say that the wave fω is non-degenerate, if

K er [L+] = span[∂ j fω, j = 1, . . . ,n].

We say that fω is weakly non-degenerate, if fω⊥ K er [L+].

The weak non-degeneracy of course easily follows from the non-degeneracy. While it does
not seem to be a standard notion in the literature, we introduce since it turns out it plays an
important role in stability considerations and it is also closely related to the differentiability of
the map ω→ fω. This brings us to the second main objective of this paper - beside the con-
struction of the waves, it is a common assumption in the literature that “the mapω→ fω is a C 1

3This is all formal for now, but it will turn out to be justified, once we review the relevant properties of fω
4and here, it is important to note that we are interested in a description of all elements of K er [L±] ⊂ D(L±) =

H 2(Rn).
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in some intervalΩ”. This is of course easily verifiable in the case of a single power non-linearity,
F (z) = zp , but it is a highly non-trivial fact for just about any other non-linearity. We address
this issue, in the framework of normalized waves, in Theorems 1 and Theorem 4 below.

Finally, we formally introduce the different notions of stability.

Definition 2. We say that the wave fω, as a solution to the NLS problem (1.1), is spectrally stable,
if the equation

JL~v =λ~v ,

does not have solutions, with ~v ∈ H 2(Rn),~v 6= 0,λ : ℜλ> 0. Similarly, fω is stable as a solution to
(1.3), if ∂x1L+v =λv does not have solutions v ∈ H 2(Rn),~v 6= 0,λ : ℜλ> 0.

We say that the wave fω is orbitally stable solution of (1.1), if for any ε > 0, there exists δ > 0,
so that whenever the initial data is picked so that ‖u0 − fω‖H 1(Rn ) < δ, then the corresponding
solution u satisfies

sup
t>0

inf
θ∈[0,2π],y∈Rn

‖u(t , ·− y)−e iθ fω‖H 1(Rn ) < ε.

For traveling wave solutions of (1.3), orbital stability means that for every ε> 0, there is δ> 0, so
that for all ‖u0 − fω‖H 1(Rn ) < δ, one has supt>0 infy∈Rn ‖u(t , x − y)− fω(x1 −ωt , x ′)‖H 1

x (Rn ) < ε.

There is of course the notion of asymptotic stability, but since we claim no results in this
direction, we do not introduce it here.

1.2. Variational setup: normalized waves. Of specific interests are the properties of the so-
called normalized ground states. More specifically, these are solutions (if they exist!) of the
following constrained minimization problem

(1.6)

{
I [u] := ∫

Rn |∇u(x)|2 −∫
Rn G(|u(x)|2)d x → mi n∫

Rn |u(x)|2d x =λ,λ> 0

where G(0) = 0,G ′(r ) = F (r ), or equivalently,

(1.7) G(r ) =
K∑

k=1

ak

pk +1
r pk+1 −

L∑
l=1

bl

ql +1
r ql+1.

The question for existence of solutions to (1.6) is in fact a hard one to analyze, despite many
recent advances. In fact, this is one of the central issues that we would like to address in this
paper. To that end, introduce the following function m : [0,∞) → R∪ {−∞},

m(λ) := inf∫
Rn |u(x)|2d x=λ

I [u].

Note that m = m~a,~b,~p,~q (λ) and it is possible that m(λ) = −∞ for a substantial portion of the
domain. Clearly, m(λ) >−∞ is a necessary condition for (1.6) to have a solution, in which case
we refer to (1.6) as well-posed. In addition, it turns out that the requirement that m is a non-
increasing function in λ is a sufficient5 condition for the existence of solution to the constrained
minimization problem (1.6).

More precisely, we have the following existence results.

5and as we will show, in the most important cases, it is necessary as well
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1.3. Existence results. The standard notion of bell-shapedness will appear frequently, so we
introduce it formally here - namely, we say that a function f : Rn → R is bell shaped, if there
exists a decreasing function ρ : (0,∞) → R+, so that f (x) = ρ(|x|).

Theorem 1. If

(1.8) pK < max

(
2

n
, qL

)
then6 the constrained minimization problem (1.6) is well-posed, that is m(λ) > −∞. In such
case, m(0) = 0. If in addition, pK < 2

n−2 and the parameters ~p = (p1, . . . , pK ),~q = (q1, . . . , qL),~a =
(a1, . . . , aK ),~b = (b1, . . . ,bL) are so that

(1.9) m is non-increasing on the interval Ω,

then, the problem (1.6) has a solutionϕλ :λ ∈Ω, which is smooth and bell-shaped. It also satisfies
the Euler-Lagrange equation (1.2), that is there is a Lagrange multiplier ω = ωλ, so that (1.2)
holds in a distributions sense. There are the following properties

(1) the linearized operator L+ satisfies L+|{ϕλ}⊥ ≥ 0. In fact, it has exactly one negative eigen-
value.

(2) The function m(λ) is locally Lipschitz, that is for each interval (a,b) ⊂ (0,∞), there is Ca,b

so that supx,y∈(a,b) |m(x)−m(y)| ≤ Ca,b |x − y |. As such, it is differentiable a.e. and its

derivative is m′(λ) =−ωλ
2 . In addition, there is the representation formula

(1.10) m(λ2)−m(λ1) =−1

2

∫ λ2

λ1

ωλdλ.

for each λ1,λ2 > 0.

Remarks:

• The condition (1.8) is necessary for the existence of the waves, otherwise m(λ) = −∞,
see Proposition 1 below.

• The condition (1.9) is also necessary, see Proposition 1.
• Implicitly in the statement, we have that the Lagrange multiplier ωλ also depends on

the particular minimizerϕλ. That is, we cannot rule out the possibility that for the same
λ > 0, there are two minimizers ϕλ,ϕ̃λ : ‖ϕλ‖2 = ‖ϕ̃λ‖2

L2 = λ, with ωλ,ϕ 6= ωλ,ϕ̃. On the
other hand, on the set where m′ exists (which is a.e.), we have that ωλ =−2m′(λ), which
is independent on the minimizers.

Next, we turn to the necessity of the assumptions made in Theorem 1.

Proposition 1. For the constrained minimization problem (1.6), we have the following

• (necessity of (1.8)) If pK > max
( 2

n , qL
)
, then m(λ) =−∞.

• (normalized waves exist only forω> 0) If fω ∈ H 1(Rn)∩L2pK +1(Rn)∩L2qL+1(Rn) is a min-
imizer of (1.6), then ω> 0.

• Suppose that (1.8) holds and the constrained minimization problem (1.6) has a solution
for each λ> 0. Then, λ→ m(λ) is a non-increasing function.

As an easy and useful corollary of Theorem 1, we have the following

6with the understanding that in the absence of de-focusing terms, that is b1 = . . . = bL = 0, max
( 2

n , qL
)= 2

n
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Proposition 2. Letϕ be one of the constrained minimizers described in Theorem 1. If in addition,
〈L+ϕ,ϕ〉 =−2

∫
Rn F ′(ϕ2)ϕ4d x < 0, then the wave ϕ is weakly non-degenerate, i.e. ϕ⊥ K er [L+].

In particular, if F has only focusing terms, the corresponding wave is always weakly non-
degenerate. We now discuss the properties of the solutions to (1.2). In doing so, one has to keep
in mind that in general, we do not know uniqueness for (1.2), while on the other hand, some
solutions are generated by the constrained minimization procedure, as described in Theorem
1.

Theorem 2. Assume ω> 0 , (1.8) holds, and f is a bell-shaped function, with f ∈ L2(Rn), so that
f is a strong solution of (1.2), that is

(1.11) f = (−∆+ω)−1[F ( f 2) f ]

Then, f ∈ L∞(Rn) and moreover, f has exponential decay rate at ∞. More precisely,

f (x) ≤C (1+|x|)− n−1
2 e−pω|x| and in fact, there is c > 0, so that for all large |x|,

f (x) = c
e−pω|x|

|x| n−1
2

+o

(
e−pω|x|

|x| n−1
2

)
.

Next, we have a general result about L−,L+.

1.4. Spectral results about L−,L+.

Theorem 3. Suppose ω > 0, fω > 0, fω ∈ H 2(Rn) solves (1.2) and it has exponential decay. Then,
the operators L−,L+ enjoy the following spectral properties:

(1) L− ≥ 0, so that 0 is a simple eigenvalue, with an eigenspace spanned by fω.
(2) L+ has at least one negative eigenvalue.
(3) Assume in addition that n 6= 2, n(L+) = 1. Then, K er [L+] ⊇ {∂1 fω, . . . ,∂n fω} is either

n or n + 1 dimensional. In the former case, K er [L+] = span{∂1 fω, . . . ,∂n fω}, while in
the latter K er [L+] = span{∂1 fω, . . . ,∂n fω,Ψ0}, where Ψ0 is a function, depending on the
radial variable only, with exactly one zero in (0,∞). In addition,Ψ0 is a bounded function

and there is the exponential bound |Ψ0(x)| ≤C (1+|x|)− n−1
2 e−pω|x|. In fact, there is c > 0,

so that for all large |x|,

Ψ0(x) = c
e−pω|x|

|x| n−1
2

+o

(
e−pω|x|

|x| n−1
2

)
Remark: The requirement for exponential decay of fω could be weakened significantly. How-

ever, in view of the result listed in Theorem 2, the minimizers of (1.6) do have exponential decay.
Thus, generalizing Theorem 3 to cover fω with less than exponential decay seems like a mute
point.

1.5. Smoothness of λ → m(λ) and the non-degeneracy of the constrained minimizers. We
start with a lemma that is interesting in its own right, but it will turn out to be relevant for the
smoothness λ→ m(λ).

Proposition 3. Assume that (1.8) and (1.9) holds on an interval Ω = (a,b). Let λ ∈ (a,b) be a
point of differentiability for ω(λ). Then, for each sequence δ j → 0, there exists a subsequence δ jk

and Φλ, so that

• limk→∞ ‖ϕλ+δ jk
−Φλ‖H 1 = 0,
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• Φλ is a constrained minimizer for (1.6), in particular it satisfies Φλ ∈ H 2(Rn)∩L∞(Rn)
and the Euler-Lagrange equation (1.2), hence Theorem 2 applies to it.

Remark: For the purposes of the presentation below, we shall call Φλ obtained according to
the procedure described in Proposition 3 a limit wave7.

For the next theorem, we make some remarks concerning the Lagrange multipliers ω. As
we have alluded to above, in general, one cannot claim, without any additional arguments, the
continuity of the map λ→ ωλ and even the independence of ωλ on the particular minimizer
ϕλ. Some of the smoothness issues were touched upon by Maris, [24].

Theorem 4. Let pK < 2
n−2 . Assume that for a fixed interval (a,b),0 < a < b ≤ ∞, and for each

λ ∈ (a,b), ϕλ is a minimizer for (1.6) and

(1.12) lim
δ→0

‖ϕλ+δ−ϕλ‖L2 = 0

then

(1) λ→ω(λ) is a continuous function on (a,b) and λ→ m(λ) is a C 1(a,b) function, given by
(1.10).

(2) The function λ→ m(λ) is a strictly concave function on (a,b). In particular, m is twice
differentiable almost everywhere, ω′(λ) =−2m′′(λ) > 0, whenever ω′(λ) exists.

(3) Assuming that ω′(λ) exists, then the waves ϕλ are weakly non-degenerate, that is ϕλ ⊥
K er [L ϕλ

+ ].

For the rest, assume n ≥ 3 and ω′(λ) exists.

(1) If ϕλ is non-degenerate, that is K er [L+] = span[∂1ϕλ, . . . ,∂nϕλ], then the function λ→
ϕλ is differentiable as an L2(Rn)-valued mapping, at all points of differentiability of ω.
Also, we have the formula

∂λϕλ =−ω′(λ)L −1
+ ϕλ.

In particular, 〈L −1+ ϕλ,ϕλ〉 =− 1
2ω′(λ) < 0.

(2) If ϕλ is degenerate, i.e. K er [L+] = span[∂1ϕλ, . . . ,∂nϕλ,Ψ0], but we assume the stronger
condition

(1.13) lim
δ→0

‖ϕλ+δ−ϕλ‖L2√
|δ|

= 0,

then again, the function λ → ϕλ is differentiable as an L2(Rn)-valued mapping, at all
points of differentiability8 of ω and

∂λϕλ =−ω′(λ)L −1
+ ϕλ,

and consequently 〈L −1+ ϕλ,ϕλ〉 =− 1
2ω′(λ) < 0.

Remarks:

• The assumptions (1.12), in the non-degenerate case, is very weak, compared to the con-
clusions. Note that it is claimed that λ→ϕλ is differentiable9, which implies

lim
δ→0

‖ϕλ+δ−ϕλ‖L2

|δ| = ‖∂λϕλ‖ = |ω′(λ)|‖L −1
+ ϕλ‖.

Clearly, this last identity implies (5.3) and it is indeed stronger.

7This is not a standard notion by any means, but it arises naturally in our considerations, we name it.
8which is at least almost everywhere
9at the points of differentiability of ω
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• Even in the weakly non-degenerate case, the stronger assumption (1.13) is much weaker
than the subsequent claim. In the same fashion, it is claimed that in particular

limδ→0
‖ϕλ+δ−ϕλ‖L2

|δ| exists, which implies, and it is in fact stronger than, (1.13).

Our next result concerns some cases in which we can assert the non-degeneracy of ϕλ.

Proposition 4. Assume that ϕ is a bell-shaped wave, which is weakly non-degenerate, that is
ϕλ⊥ K er [L+]. Assume in addition that n ≥ 3, n(L+) = 1 and one of the following holds

(1.14) F (r ) =
K∑

k=1
ak r pk ,

or

(1.15) F (r ) =
K∑

k=1
ak r pk −br q ,0 < q < p1

or

(1.16) F (r ) =
K∑

k=1
ak r pk −br q ,0 < pK < q.

Then, the corresponding constrained minimizerϕλ is non-degenerate, i.e. K er [L+] = span[∇ϕ].

Clearly, in order to ensure that a wave ϕ like that exists, we need further assumptions in
Proposition 4, like pK < 2

n in (1.14) and (1.15), and pK < 2
n−2 in (1.16).

1.6. Applications to the stability of normalized waves for Schrödinger and Zakharov -
Kuznetsov equation. We finally state our results concerning the stability of the waves con-
structed in Theorem 1.

Theorem 5. (Focusing nonlinearity) Let (1.14) holds and n ≥ 3. Then, for every λ > 0, there
exists an a.e. differentiable function ω=ω(λ) > 0 and a bell-shaped constrained minimizer fω ∈
H 2(Rn)∩L∞(Rn) for the problem (1.6) with

fω(x) = cω
e−pω|x|

|x| n−1
2

+o

(
e−pω|x|

|x| n−1
2

)
, |x|→∞.

In addition, for every point of differentiability of λ→ ω(λ), let fωλ be the limit wave, in the
sense of Proposition 3. Then, fω is non-degenerate, in the sense of Definition 1. Finally, e iωλt fωλ
is orbitally stable solution of the NLS and the Zakharov-Kuznetsov system.

Remark: We show that the assumption (1.14) implies (1.9). The rest of the statement is a
combination of Theorems 1, 2, 3, Proposition 4 and Proposition 3.

Our next result concerns mixed nonlinearities - some focusing and one defocussing, as in
(1.15) or (1.16). The only difference with Theorem 5 is that we now need to explicitly assume
that (1.9) holds. Note that such assumption is necessary, by Proposition 1, if we were to expect
normalized waves.

Theorem 6. (nonlinearity with at most one defocussing term ) Let the nonlinearity be in the
form (1.15) or (1.16) holds. Assume that (1.9) holds. Then, for every λ > 0, there exists an a.e.
differentiable function ω = ω(λ) > 0 and a bell-shaped constrained minimizer fω ∈ H 2(Rn) ∩
L∞(Rn) for the problem (1.6) with

fω(x) = cω
e−pω|x|

|x| n−1
2

+o

(
e−pω|x|

|x| n−1
2

)
, |x|→∞.
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In addition, assuming that n ≥ 3 and for every point of differentiability of λ→ω(λ), let fωλ be
a limit wave, in the sense of Proposition 3. Then, fω is non-degenerate, in the sense of Definition
1. Finally, e iωλt fωλ is orbitally stable for the NLS equation (1.1), and fω(x1 −ωλt , x ′) is spectrally
stable solution to the Zakharov-Kuznetsov model (1.3).

Our most general result, applies to general mixed power non-linearities, satisfying (1.8). Un-
fortunately, in this case, in order to obtain any stability result, we need to require (1.13).

Theorem 7. Assume (1.8), (1.9). Then, for every λ> 0, there exists an a.e. differentiable function
ω = ω(λ) > 0 and a bell-shaped constrained minimizer fω ∈ H 2(Rn)∩L∞(Rn) for the problem

(1.6) with fω(x) = cω
e−

p
ω|x|

|x| n−1
2

+o

(
e−

p
ω|x|

|x| n−1
2

)
as |x|→∞. If in addition n ≥ 3, λ is a point of differentia-

bility for ω(λ) and

lim
δ→0

|δ|−1/2‖ fωλ+δ − fωλ‖L2(Rn ) = 0,

then the wave e iωλt fωλ is a spectrally stable solution of NLS (1.1), while fω(x1 −ωλt , x ′) is spec-
trally stable solution to the Zakharov-Kuznetsov equation, (1.3).

Let us finish this introduction with an outline of the paper. In Section 2, we introduce some
basic notions and standard results, in particular we present the basics of the Hamilton instabil-
ity index count in Section 2.3. In Section 3, we give the variational construction of the waves,
including the Euler-Lagrange equations, some initial smoothness results about the important
function m as well as the necessity of the assumptions of Theorem 1, formulated in Proposi-
tion 1 above. Section 3 finishes with the simple proof of Proposition 2. In Section 4, we discuss
the general functional properties of the waves, beyond the basics established in Section 3. In
fact, for most of this section, we take (the more general) viewpoint of the waves as solutions
to PDE, rather than constrained minimizers. We establish L∞ bounds at zero as well as pre-
cise asymptotic behavior at ∞. In Section 5, we start with an in depth analysis of the spectral
properties of the linearized operators L−,L+. In it, we need to resort to the spherical harmonic
decomposition, thanks to the radiality of the potential. In Section 6, we show smoothness and
non-degeneracy properties of the normalized waves. In particular, we prove Proposition 3. We
also discuss the subtle issues of the dependence of the Lagrange multiplierωλ on the particular
minimizer ϕλ, its continuity and concavity of λ→ m(λ). In Section 6.4, we establish the weak
non-degeneracy of the waves, under the assumptions in Theorem 4. In Section 6.5 and 6.6, we
explore the differentiability of the (Banach space valued) mapping λ→ ϕλ, under weak non-
degeneracy and non-degeneracy assumptions. This allows us to compute the sign of Vakhitov-
Kolokolov index, which in turn implies spectral stability. As it turns out, this is intimately related
to the concavity properties of m. In Section 6.7, we establish the non-degeneracy of the wave
in the cases considered in Theorems 5, 6, 7. This is the key remaining ingredient of the or-
bital stability of the corresponding waves for the NLS models, as stated in the aforementioned
theorems. This is done via an abstract result yielding orbital stability from spectral stability
and non-degeneracy. Finally, due to the failure of the abstract theory to cover the Zakharov-
Kuzntesov case, we provide a direct proof of the orbital stability for the Zakharov-Kuznetsov
model in Section 7.2, see Proposition 8.
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2. PRELIMINARIES

We use standard notations for Lp spaces, W s,p for Sobolev spaces etc. We use the following
definition of Fourier transform and its inverse

f̂ (ξ) =
∫

Rn
f (x)e−2πiξ·xd x, f (x) =

∫
Rn

f̂ (ξ)e2πiξ·xdξ

In this setting, the Laplacian is given by the symbol −4π2|ξ|2. A decreasing rearrangement for
a function f : Rn → C is the radially decreasing function f ∗ : Rn → R+, which has the same
distribution function as f . It is standard that for all lattice norms (i.e. those that depend only
on the distribution function d f (α) = |{x ∈ Rn : | f (x)| ≥ α}|), ‖ f ‖X = ‖ f ∗‖X . In addition, there is
the Polya-Szegö inequality

(2.1) ‖∇ f ‖L2 ≥ ‖∇ f ∗‖L2 ,

where in addition, equality is achieved only if f = f ∗, modulo the usual invariance group. This
is then a good place to introduce bell-shaped functions.

Definition 3. We say that a function f : Rn → R is bell-shaped, if f = f ∗.

The bell-shaped functions will have the following point-wise decay property that will be used
throughout in the sequel. Let x : |x| = R, then a bell-shaped function f satisfies, for all q > 0,

‖ f ‖q
Lq ≥

∫
|y |<R

| f (y)|q d y ≥ cnRn | f (x)|q ,

whence
0 ≤ f (x) ≤Cn‖ f ‖Lq |x|− n

q .

The uniform convexity property of the Lr ,r > 1 norms will be useful in the variational argu-
ments in the sequel.

Proposition 5. Let r > 1, { fn} be a bounded sequence in Lr , with a weak limit f , fn * f . Then,

liminf
n

‖ fn‖Lr ≥ ‖ f ‖Lr .

If in addition limn ‖ fn‖Lr = ‖ f ‖Lr , then fn → f in Lr norm, that is limn ‖ fn − f ‖Lr = 0.

2.1. Precise asymptotic of the Green’s function of (−∆+ 1)−1. We record the formula for the
Green function of (−∆+1)−1, that is Q̂(ξ) = (1+4π2|ξ|2)−1 (see [10], p. 418)

(2.2) Q(x) = (2
p
π)−n

∫ ∞

0
e−(t+ |x|2

4t ) d t

t n/2
.

Note that Q > 0, radial and radially decreasing. Also, ‖Q‖L1(Rn ) =
∫

Rn Q(x)d x = Q̂(0) = 1, but note
that Q(0) =+∞ for n ≥ 2. In fact, we have the following lemma about Q.

Lemma 1. The Green’s function Q introduced in (2.2) satisfies, for all |x| > 1,

|Q(x)| ≤Ce−|x|.

For |x| ≤ 1, we have the asymptotic formula

Q(x) ∼
{ |x|2−n +O(1) n ≥ 3

ln( 1
|x| )+O(1) n = 2

In particular, Q ∈ Lq (Rn), whenever q < n
n−2 (or q <∞, when n = 2).
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Remark: More precise asymptotics will give the optimal decay rate for large |x|, which is |Q(x)| ≤
C |x|− n−1

2 e−|x|.

Proof. The asymptotics near zero are well-known, see Proposition 6.1.5, p. 418, [10]. Regarding
|x| >> 1, we start by rewriting Q in (2.2). We obtain

Q(x) = e−|x|

|x| n
2 −1

∫ ∞

0
e−|x|(u− 1

2u )2 du

un−1
.

It remains to check that

sup
µ>1

∫ ∞

0
e−µ(u− 1

2u )2 du

un−1
<∞.

This follows easily, once we split the integration in (0,1/2), (1/2,1) and (1,∞). �

2.2. Eigenspaces of spherical Laplacians and applications to Schrödinger operators with ra-
dial potentials. The Laplacian operator can be written in its radial and angular components as
follows

∆= ∂r r + n −1

r
∂r +

∆Sn−1

r 2
.

Let X0 = L2
r ad (Rn) be the radial subspace of L2(Rn), defined by

X0 = L2
r ad (Rn) = { f (| · |) :

∫ ∞

0
| f (r )|2r n−1dr <∞}.

It is well-known that for each k = 1,2, . . . ..., the eigenvalues of ∆Sn−1 are given by −k(k +n −2),
with the spherical harmonics Yk as eigenfunctions10∆Sn−1 Yk =−k(k+n−2)Yk . In fact, it is easy
to identify the eigenfunctions corresponding to k = 1, as these are exactly

x j

r , j = 1, . . . ,n,

(2.3) −∆Sn−1

x j

r
= (n −1)

x j

r
, j = 1, . . . ,n

Accordingly, introduce the invariant for ∆ subspaces

Xk := span{ f (r )Yk : fk ∈ L2
r ad (Rn),−∆Sn−1 Yk = k(k +n −2)Yk },k = 1,2, . . .

so that there is a orthogonal decomposition

L2(Rn) =⊕∞
k=0Xk .

Next, consider a Schrödinger operator in the form H :=−∆+ω−V (|x|), where the potential is
a radial function. Clearly, H acts invariantly on Xk ,k = 0,1, . . . as well. Denoting Hk :=H |Xk ,
we observe that Hk can be viewed as an operator acting on the subspace of radial functions
L2

r ad (Rn), through the formula

(2.4) Hk =−∂r r − n −1

r
∂r +ω+ k(k +n −2)

r 2
−V (r ),k = 0,1,2, . . .

In addition, H0 <H1 < . . . <Hk < . . ., as operators acting on L2
r ad (Rn), in particular,

σL2(Rn )(H ) =∪∞
k=0σL2

r ad (Rn )(Hk )

10It is also well-known that the multiplicity of the eigenvalue k(k +n−2) is exactly

(
n +k −1

k

)
−

(
n +k −3

k −2

)
,

but this fact will not be used later on
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It is now easy to apply these ideas to the operator L+. Suppose that fω is radial and sufficiently
smooth and decaying. Since L+[∇ fω] = 0 and ∂ j fω = x j

r f ′
ω(r ), whence (recall that by (2.3), x j /r

is an eigenfunction corresponding to k = 1)

0 =L+[∂ j fω] =L+,1[ f ′].

That is, the function f ′
ω is an eigenfunction, corresponding to zero eigenvalue for L+,1. Recall-

ing that L+,0 =L+,1 − n−1
r 2 , we conclude

〈L+,0[ f ′], f ′〉 = 〈L+,1[ f ′], f ′〉− (n −1)
∫ ∞

0
( f ′(r ))2r n−3dr =−(n −1)

∫ ∞

0
( f ′(r ))2r n−3dr < 0.

Applying the Ritz-Rayleigh principle implies the following lemma.

Lemma 2. L+ always has at least one negative eigenvalue.

2.3. Index theory and spectral stability. In this section, we introduce some basic consequences
of the index theory, as developed over the last thirty years. In its most basic form, it was put for-
ward by Grillakis, Shatah and Strauss in a series of seminal papers, [11, 12]. Their theory applies
to the eigenvalue problem of the type (1.4), where the skew symmetric operator J is invertible.
For eigenvalue problem (1.5), J = ∂x in particular fails to be invertible, the GSS theory does not
apply to it. This case is covered in more recent works, [18, 30] and more recently [23]. For the
results that we quote below, we follow the book [17] for (1.4) and the recent paper [23] for the
eigenvalue problem (1.5).

For (1.4), we have the following setup. The eigenvalue problem is in the form

(2.5) JL f =λ f ,

where J is assumed to be bounded, invertible and skew-symmetric (J ∗ =−J ), while (L ,D(L ))
is self-adjoint(L ∗ = L ) and not necessarily bounded, with finite dimensional kernel K er [L ].
Assume in addition that L has a finite number of negative eigenvalues, n(L ) and
J−1 : K er [L ] → K er [L ]⊥. Let kr denote the number of positive eigenvalues of (2.5), kc be
the number of quadruplets of eigenvalues with non-zero real and imaginary parts, and k−

i , the
number of pairs of purely imaginary eigenvalues with negative Krein-signature11. Let K er [L ] =
{φ1, . . . ,φm}, , then introduce a matrix D = (Di j )m

i , j=1

(2.6) Di j := 〈L −1[J−1φi ],J−1φ j 〉, i , j = 1, . . . ,m.

where the formula is meaningful, since J−1φi ∈ K er [L ]⊥. The index counting theorem, see
Theorem 1, [16] states that if det (D) 6= 0, then

(2.7) kr +2kc +2k−
i = n(L )−n(D).

The most common corollary, which we use, is that n(L ) = 1, whence stability follows once we
establish n(D) ≥ 1. In the case of the eigenvalue problem (1.4), this is simply a consequence
of 〈L −1+ fω, fω〉 < 0. The case of the eigenvalue problem (1.5) is slightly more involved, as is
was alluded to above. Nevertheless, as shown in [23], spectral stability follows in the same way
(formula similar to (2.7) holds true), provided 〈L −1+ fω, fω〉 < 0. Thus, in all our spectral stability
calculations, we have reduced matters to the computation of the scalar index 〈L −1+ fω, fω〉 < 0,
sometimes referred to as Vakhitov-Kolokolov criteria for stability. In short, we have shown the
following

Proposition 6. For the eigenvalue problem (1.4), assume that

11The precise definition of those is provided in [15]. For us, k−
i = 0, so this will be irrelevant
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• n(L+) = 1, n(L−) = 0,
• fω⊥ K er [L+] and 〈L −1+ fω, fω〉 < 0.

Then, (1.4) is spectrally stable, in the sense of Definition 2. For the eigenvalue problem (1.5),
assume

• n(L+) = 1
• fω⊥ K er [L+] and 〈L −1+ fω, fω〉 < 0.

Then, (1.5) is spectrally stable, in the sense of Definition 2.
Regarding orbital stability for the NLS problem, it follows from spectral stability, the non-

degeneracy of fω (i.e. K er [L+] = span[∂1 fω, . . . ,∂n fω]), in addition to the smoothness of the map
ω→ fω as an H 1 valued mapping.

Remark: The last statement about orbital stability is a corollary of a very general result,
namely Theorem 5.2.11, [17]. Note the requirement about smoothness ω→ fω as an H 1 val-
ued mapping, right under (5.2.47) on p. 139.

3. EXISTENCE OF THE WAVES

3.1. Proof of Theorem 1. We first show that the problem is well-posed, i.e. m(λ) >−∞ for each
λ> 0, if (1.8) holds. If pK < 2

n , we have by Sobolev embedding, for each p ∈ (0, 2
n ),

‖u‖L2p+2 ≤C‖u‖
Ḣ

n( 1
2 − 1

2p+2 ) ≤C‖∇u‖n( 1
2− 1

2p+2 )‖u‖1−n( 1
2− 1

2p+2 )

L2

Noting that 2(p+1)n( 1
2− 1

2p+2 ) < 2, we conclude that for each u : ‖u‖2
L2 =λ, we have the estimate

(3.1)
K∑

k=1

ak

pk +1
‖u‖2pk+2

L2pk+2 ≤ ε‖∇u‖2
L2 +Cε,λ

for each ε> 0. Choosing ε= 1
2 , it follows that

I [u] ≥ 1

2
‖∇u‖2

L2 +
L∑

l=1

bl

ql +1
‖u‖2ql+2

L2ql +2 −C 1
2 ,λ ≥−C 1

2 ,λ.

If on the other hand, pK < qL , we have by Gagliardo-Nirenberg inequality for all p ∈ (0, qL),
‖u‖L2p+2 ≤ ‖u‖θ2qL+2‖u‖1−θ

L2 , where θ ∈ (0,1) : 1
2p+2 = θ

2ql+2 + 1−θ
2 . Thus,

(3.2)
K∑

k=1

ak

pk +1
‖u‖2pk+2

L2pk+2 ≤ ε‖u‖2qL+2

L2qL+2 +Cε,λ.

Once again,

I [u] ≥ ‖∇u‖2
L2 +

L∑
l=1

bl

ql +1
‖u‖2ql+2

L2ql +2 −ε‖u‖2qL+2

L2qL+2 −Cε,λ ≥−Cε,λ,

for appropriate choice of ε.
Next, we take on the existence of a minimizer, now that we know that m(λ) > −∞. First,

observe that when minimizing I [u], it is always better to take u∗ instead of u. Indeed, by Polya-
Szegö inequality and ‖u‖Lr = ‖u∗‖Lr , we conclude that I [u] ≥ I [u∗], while ‖u‖2

L2 = λ = ‖u∗‖2
L2 .

Furthermore, by the conditions for equality in Ploya-Szegö, the minimizer, if it exists is neces-
sarily a bell-shaped function12, i.e. u = u∗. So, it suffices to focus our attention to bell-shaped
functions.

12after accounting for translations
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Take a minimizing sequence, say u j , of bell-shaped functions, which satisfy ‖u j‖2
L2 =λ and

I [u j ] ≤ m(λ)+ 1

j
.

We have shown that due to the assumption (1.8), we have either (3.1)or (3.2). In either case, we
have

‖∇u j‖2
L2 +

L∑
l=1

bl

ql +1
‖u j‖2ql+2

L2ql +2 ≤ m(λ)+ 1

j
+

K∑
k=1

ak

pk +1
‖u j‖2pk+2

L2pk+2 ≤

≤ m(λ)+ 1

j
+ε(‖∇u j‖2

L2 +
L∑

l=1
‖u j‖2ql+2

L2ql +2 )+Cε,λ.

Thus, for appropriate choice of ε, we conclude

(3.3) ‖∇u j‖2
L2 +

L∑
l=1

‖u j‖2ql+2

L2ql +2 ≤Cλ,

where Cλ is an explicit and continuous function of λ, depending only on n and the parameters
~p,~q . Since this last quantity controls ‖u j‖L

p j , {u j } is a bounded sequence in all these spaces. By
taking a subsequence, we can without loss of generality assume that u j converges to u j *ϕ, in
all of these weak topologies. Recall now that u j = u∗

j : ‖u j‖2 =λ, whence

λ=
∫

Rn
|u j (x)|2d x ≥

∫
|x|≤R

|u j (x)|2d x ≥ cnRn |u j (x)|2,

for every x : |x| = R. We have |u j (x)| ≤ cn |x|−n/2, whence∫
|x|>R

|u j (x)|2+2p d x ≤ cnR−np .

In addition, we have that for p < 2
n−2 , α= 1− np

2(p+1) > 0 and hence by Sobolev embedding,
‖u j‖W α,p (Rn ) ≤ C‖u j‖H 1(Rn ) ≤ Cλ. Thus, by the Riesz-Relich compactness criteria, un is a com-
pact subsequence in the strong topology of all L2pk+2, whence (after eventual taking a subse-
quence), lim j ‖u j −u‖L2pk+2 = 0, k = 1, . . . ,K . Using the lower semi-continuity of the weak norm,
with respect to the strong norm in Lr ,r > 1, we have ‖ϕ‖2

L2 ≤ liminf j ‖u j‖2
L2 =λ and

m(λ) = lim
j→∞

I [u j ] ≥ liminf
j→∞

[‖∇u j‖2
L2 +

L∑
l=1

bl

ql +1
‖u j‖2ql+2

L2ql +2 ]− lim
j

K∑
k=1

ak

pk +1
‖u j‖2pk+2

L2pk+2 ≥

≥ ‖∇ϕ‖2
L2 +

L∑
l=1

bl

ql +1
‖ϕ‖2ql+2

L2ql +2 −
K∑

k=1

ak

pk +1
‖ϕ‖2pk+2

L2pk+2 = I [ϕ] ≥ m(‖ϕ‖2) ≥ m(λ),

where in the last step, we have used the fact that m is non-increasing. Clearly, in all the above
chain of inequalities we have equalities. In particular, ‖ϕ‖2

L2 = λ, I [ϕ] = m(λ), whence ϕ is a
minimizer of (1.6). In addition, observe that liminf j ‖∇u j‖L2 = ‖∇ϕ‖L2 and
liminf j ‖u j‖L2ql +2 = ‖ϕ‖L2ql +2 , l = 1, . . . ,L. By Proposition 5, u j tends toϕ in the norm of H 1(Rn)∩
L2qL+2(Rn).
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3.2. Euler-Lagrange equations. We now derive the Euler-Lagrange equation, which are satis-
fied by the minimizers ϕλ. The starting point is that for arbitrary test function h and a real
parameter ε, there is the inequality

(3.4) I

[p
λ

ϕλ+εh

‖ϕλ+εh‖L2

]
≥ I [ϕλ],

which exploits the fact that ϕλ is a minimizer. For simplicity, take h real-valued so that h :
〈h,ϕλ〉 = 0, ‖ϕλ+εh‖2

L2 =λ+ε2‖h‖2. Expanding in orders of ε, we find

I

[p
λ

ϕλ+εh

‖ϕλ+εh‖L2

]
=

∫
Rn

|∇[ϕλ+εh]|2 −
∫

Rn
G(ϕ2

λ+2εϕλh)+O(ε2) =

= I [ϕλ]+2ε(〈−∆ϕλ−G ′(ϕ2
λ)ϕλ,h〉)+O(ε2).

It follows that 〈−∆ϕλ−G ′(ϕ2
λ

)ϕλ,h〉 = 0, whenever h ⊥ ϕλ. Equivalently, there is a Lagrange
multiplier ωλ, so that

(3.5) −∆ϕλ−F (ϕ2
λ)ϕλ =−∆ϕλ−G ′(ϕ2

λ)ϕλ =−ωλϕλ.

Note that so far, this equation is only satisfied in weak sense, since we only know ϕλ ∈ H 1(Rn)!
This is of course nothing but the elliptic profile equation (1.2). Taking dot product with ϕλ
(which is justified even for weak solutions ϕλ) gives the useful relation

(3.6) ωλ =
∫

Rn F (ϕ2
λ

)ϕ2
λ
−‖∇ϕλ‖2

λ
.

Taking into account (3.6) and expanding up to second order in ε in (3.4) (keeping in mind that
h ⊥ϕλ), we obtain

I

[p
λ

ϕλ+εh

‖ϕλ+εh‖L2

]
=

= (1− ε2

λ
‖h‖2)

∫
Rn

|∇[ϕλ+εh]|2 −
∫

Rn
G

(
(ϕ2

λ+2εϕλh +ε2h2)(1− ε2

λ
‖h‖2)

)
=

= I [ϕλ]+ε2
(
〈(−∆−F (ϕ2)−2F ′(ϕ2)ϕ2)h,h〉+ 1

λ
(
∫

Rn
F (ϕ2

λ)ϕ2
λ−‖∇ϕλ‖2)‖h‖2

)
+O(ε3) =

= I [ϕλ]+ε2〈L+h,h〉+O(ε3).

It follows that 〈L+h,h〉 ≥ 0, whenever h ⊥ ϕλ. It follows that L+ has at most one negative
eigenvalue. In Morse index notations, n(L+) ≤ 1. It follows from Lemma 2 that n(L+) ≥ 1, so
we conclude that n(L+) = 1.

3.3. Properties of the function m(λ).

Lemma 3. The function m : (0,∞) → R∪{−∞} is a non-positive function. In addition, supposing
that the requirement (1.8) of Theorem 1 is met, then m is a Lipschitz function, with a locally
bounded Lipschitz constant.

Proof. Fix λ> 0 and a Schwartz function χ : ‖χ‖2
L2 =λ, so that χµ(x) :=µn/2χ(µx), has the prop-

erty ‖χµ‖2 =λ. Then, m(λ) ≤ I [χµ] for each µ> 0, whence

m(λ) ≤ liminf
µ→0+ I [χµ] = liminf

µ→0+ [µ2‖∇χ‖2
L2 −µ−n

∫
Rn

G(µnχ2(x))d x] = 0.
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Suppose now that (1.8) is satisfied. According to13 (3.3) , we may define

m(λ) = inf
‖u‖2=λ,‖u‖

H1∩L2ql +2≤2Cλ

I [u] = inf
‖u‖2=λ,‖u‖

H1∩L2ql +2≤1.5Cλ

I [u]

Upon introducing a new variable, U : u =p
λU , we can write

k(λ) := m(λ)

λ
= inf

‖U‖2=1,‖U‖
H1∩L2ql +2≤2Cλ

[‖∇U‖2 −
K∑

k=1

akλ
pk−1

2

pk +1

∫
Rn

|U |2+2pk +

+
L∑

l=1

blλ
ql −1

2

ql +1

∫
Rn

|U |2+2ql ]

Clearly, it suffices to check that k is Lipschitz. Fix an U that satisfies the constraint for λ+δ, that
is ‖U‖ = 1, ‖U‖H 1∩L2ql +2 ≤ 2Cλ+δ. For each such U we have

‖∇U‖2 −
K∑

k=1

ak (λ+δ)
pk−1

2

pk +1

∫
Rn

|U |2+2pk +
L∑

l=1

bl (λ+δ)
ql −1

2

ql +1

∫
Rn

|U |2+2ql =

= ‖∇U‖2 −
K∑

k=1

akλ
pk−1

2

pk +1

∫
Rn

|U |2+2pk +
L∑

l=1

blλ
ql −1

2

ql +1

∫
Rn

|U |2+2ql +Eδ,λ,

where the error term Eδ,λ clearly can be estimated as follows

|Eδ,λ| ≤C |δ|( 1

λ
+λqL +λpK )(1+‖U‖2+2qL

L2+2qL
+‖U‖2+2pK

L2+2pK
) ≤ |δ|Dλ,

where again Dλ is an explicit, continuous (and computable in terms of Cλ, ~p,~q etc.) function
of λ. It follows that, by taking |δ| small enough so that 2Cλ+δ > 1.5Cλ and consequently taking
infimum over all U satisfying the constraints for λ+δ (and hence, by the choice of δ for λ as
well)

(3.7) k(λ)−Dλ|δ| ≤ k(λ+δ) ≤ k(λ)+Dλ|δ|.
This is the desired Lipschitzness for k, with a constant Dλ. Due to the fact that m is Lipschitz,
we have that it is differentiable a.e. We show now that ωλ ≥ 0 and whenever m′(λ) exists, we
have the formula m′(λ) =−ωλ

2 . Indeed, start with the inequality

(3.8) I [ϕλ+εh] ≥ m(‖ϕλ+εh‖2) = m(λ+2ε〈ϕλ,h〉+ε2‖h‖2),

valid for all ε and all test functions h. On the other hand, there is

(3.9) I [ϕλ+εh] = I [ϕλ]−εωλ〈ϕλ,h〉+ ε2

2
〈(L+−ωλ)h,h〉+O(ε3) = m(λ)−εωλ〈ϕλ,h〉+O(ε2).

Taking h =ϕλ yields

(3.10) m(λ+2λε+ε2λ) ≤ m(λ)−ελωλ+O(ε2).

For ε < 0, we have −ωλ ≤ m(λ+2λε+ε2λ)−m(λ)
ε

, whence by taking liminfε→0− and taking into ac-
count that m is decreasing (and since 2λε+λε2 < 0 for all small enough ε< 0),

−ωλ ≤ liminf
ε→0−

m(λ+2λε+ε2λ)−m(λ)

λε
≤ 0,

13which holds whenever m(λ) >−∞, hence it is enough to assume only (1.8)
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so, ωλ ≥ 0. If m′(λ) exists, we can compute it from (3.10). Indeed, taking ε→ 0+ yields

(3.11) m′(λ) = lim
ε→0+

m(λ+2λε+ε2λ)−m(λ)

2λε
≤−ωλ

2
,

whereas taking limε→0− yields

m′(λ) = lim
ε→0−

m(λ+2λε+ε2λ)−m(λ)

2λε
≥−ωλ

2
.

Combining the last two inequalities gives the desired formula m′(λ) =−ωλ
2 , whenever m′ exists.

Since m is Lipschitz and hence absolutely continuous, there is the formula (1.10).
�

In the case ωλ > 0, we can actually say that ϕλ is a classical solution of (3.5). Indeed, for ϕλ
(which is initially known to be only in H 1(Rn)∩L2qL+2(Rn)), we can write

(3.12) ϕλ = (−∆+ωλ)−1[F [ϕ2
λ]ϕλ].

Since the radial potential V := F [ϕ2
λ

] has some decay at ∞, we conclude from Theorem 2 that

in fact |ϕλ(x)| ≤Ce−pωλ|x|. Going back to (3.12), it is clear that the bell-shaped function ϕλ is in
fact H 2(Rn). This can clearly be bootstrapped further, we will not need to do so here.

3.4. Necessity of the assumptions: Proof of Proposition 1.

3.4.1. (1.8) is necessary. Assuming that (1.8) fails, letλ> 0 and fix a Schwartz functionχ : ‖χ‖2
L2 =

λ. Consider testing (1.6) with the sequence χN = N n/2χ(N x) : ‖χN‖2
L2 =λ, for N >> 1. We obtain

I [χN ] = N 2‖∇χ‖2
L2 −N npK ‖χ‖2+2pK

L2pK +2 +N nqL‖χ‖2+2qL

L2qL+2 +o(N npK )

Clearly, N npK is the dominant term, whence m(λ) ≤ liminfN I [χN ] =−∞.

3.4.2. Waves exist only for ωλ > 0. One can directly use the Pohozaev’s identities (A.2). From it,
and assuming that fω is a minimizer, we have

ωλn‖ fω‖2 = n
∫

Rn
G( f 2

ω(x))d x − (n −2)‖∇ fω‖2 = 2‖∇ fω‖2 −nm(λ) > 0,

taking into account that m(λ) ≤ 0, as established earlier. It follows that ωλ > 0. Note for future
reference that if fω is a constrained minimizer, then ωλ ≥ −m(λ)

λ . In particular, on an interval
(λ1,λ2), since m is non-increasing, we obtain

(3.13) inf
λ∈(λ1,λ2)

ωλ ≥−m(λ1)

λ1
.

3.4.3. λ→ m(λ) must be non-increasing. We have essentially showed this already. Indeed, re-
call that λ → m(λ) was shown to be Lipschitz, only under the assumption (1.8) (see Lemma
3). As such, it is absolutely continuous function, with a derivative a.e. Finally, assuming that a
minimizer for (1.6) exists, we have (3.8)and subsequently (3.10), whence we compute the deriv-
ative to be m′(λ) =−ωλ

2 . Since a.c. functions are integrals of their derivatives, we have for each
0 <λ1 <λ2,

m(λ2)−m(λ1) =
∫ λ2

λ1

m′(λ)dλ=−1

2

∫ λ2

λ1

ωλdλ≤ 0,

since ωλ ≥ 0. Thus, m is non-increasing.
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3.5. Proof of Proposition 2. Recall that by Theorem 1, L+|{ϕ}⊥ ≥ 0. Take any element Ψ ∈
K er [L+]. Then, Ψ−‖ϕ‖−2〈Ψ,ϕ〉ϕ ∈ {ϕ}⊥. Thus, it follows that

0 ≤ 〈L+(Ψ−‖ϕ‖−2〈Ψ,ϕ〉ϕ),Ψ−‖ϕ‖−2〈Ψ,ϕ〉ϕ〉 = ‖ϕ‖−4〈Ψ,ϕ〉2〈L+ϕ,ϕ〉.

But since 〈L+ϕ,ϕ〉 < 0, we conclude that 〈Ψ,ϕ〉 = 0, otherwise a contradiction with the previous
inequality. This establishes Proposition 2.

4. PROOF OF THEOREM 2

In the next lemma, we show that the solutions to (1.2) are bounded at zero, provided (1.8) is
assumed. Recall the notation V (x) = F ( f 2(x)).

4.1. Bounds at zero.

Lemma 4. Assume ω> 0 , (1.8) holds, and f is a bell-shaped function, with f ∈ L2(Rn), so that f
is a strong solution of (1.2), that is

(4.1) f (x) = (−∆+ω)−1[V f ] =ω n
2 −1

∫
Rn

Q(
p
ω(x − y))F ( f 2(y)) f (y)d y.

Then, f ∈ L∞(Rn).

Proof. Since f is bell-shaped, clearly f (0) = supx∈Rn | f (x)|, so we need to show that f (0) <∞.
Since Q > 0, f > 0 and after ignoring the negative part of the function F , we obtain

0 < f (x) < ω
n
2 −1

∫
Rn

Q(
p
ω(x − y))(

K∑
k=1

ak f 2pk+1(y))d y =

= ω
n
2 −1

K∑
k=1

ak

∫
Rn

Q(
p
ω(x − y)) f 2pk+1(y)d y.

By the exponential decay of Q, the integral clearly converges for large y , so the issue is control-
ling the integration, say over |y | < 1.

Assume n ≥ 3, the case n = 2 is treated similarly. As we saw in our earlier arguments for
bell-shaped functions in Lq spaces, we have that f (x) ≤ cn‖ f ‖Lq |x|−n/q , for all x 6= 0. Consider

s0 = inf{s > 0 : | f (x)| ≤Cs |x|−s , for |x| < 1}.

Clearly, since f ∈ L2, we have that 0 ≤ s0 ≤ n
2 . We will actually show s0 = 0. Assume not, so s0 > 0

and take any s > s0. Take δ ∈ (0,1) and x : |x| = δ. Then,∫
|y |<2δ

Q(
p
ω(x − y)) f 2p+1(y)d y =

∫
|y |< δ

2

Q(
p
ω(x − y)) f 2p+1(y)d y +

+
∫
δ
2 <|y |<2δ

Q(
p
ω(x − y)) f 2p+1(y)d y . δ−(n−2)

∫
|y |< δ

2

|y |−s(2p+1)d y +

+ δ−(2p+1)s
∫
δ
2 <|y |<2δ

|x − y |−(n−2)d y . δ2−(2p+1)s
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We have also good bounds for
∫

2δ<|y |<1 Q(
p
ω(x − y)) f 2p+1(y)d y . Indeed, for k0 : 2k0−1δ < 1 ≤

2k0δ, we have∫
2δ<|y |<1

Q(
p
ω(x − y)) f 2p+1(y)d y ≤

k0∑
k=1

∫
2kδ<|y |<2(k+1)δ

Q(
p
ω(x − y)) f 2p+1(y)d y .

.
k0∑

k=1
(2kδ)−(n−2)

∫
2kδ<|y |<2(k+1)δ

|y |−s(2p+1)d y .
k0∑

k=1
(2kδ)2−(2p+1)s .max(1,δ2−(2p+1)s).

and also, a bound by a constant for
∫
|y |>1 Q(

p
ω(x−y)) f 2p+1(y)d y , due to the exponential bounds

for Q. The least favorable bounds occur of course for p = pK , so this shows that | f (x)| ≤
C max(|x|−((2pK +1)s−2),1). If (2pK + 1)s − 2 ≤ 0, we have s0 = 0 and we are done. Otherwise, if
(2pK +1)s −2 > 0,

s0 ≤ (2pK +1)s −2

for all s > s0. This leads to the inequality s0 ≥ 1
pK

. But, pK < 2
n , whence s0 > n

2 . But, we already

know that s0 ≤ n
2 , a contradiction. So, s0 = 0.

This means that for all ε > 0, there is Cε, so that f (x) ≤ Cε|x|−ε. Clearly, by our argument
above, with s = ε, ∫

|y |<2δ
Q(

p
ω(x − y)) f 2p+1(y)d y . δ2−(2pK +1)ε ≤ δ.

for small enough ε. Similar to the previous estimate, now with s = ε,∫
2δ<|y |Q(

p
ω(x − y)) f 2p+1(y)d y . 1. Thus, the boundedness of f (0) is established.

�

4.2. Asymptotics at infinity for eigenfunctions and waves. The next lemma is about the exis-
tence and properties of Jost solutions, with the expected prescribed behavior at ∞. This result
will be an important ingredient in two related, but overall different situations. First, to establish
that the (radial portion of the) eigenfunctions for Schrödinger operators with radial potentials
have exponential asymptotics at ∞, and second, to actually show that the waves (which are
solutions to a non-linear problem!) actually do decay exponentially at ∞.

Lemma 5. Let k > 0, α ∈ R, A >> 1 and let V be a smooth potential, with V ∈ L1(A,∞). Let Φ be
a non-trivial C∞ decaying solution in (A,∞) of the problem

(4.2) −Φ′′(r )+k2Φ(r )+ α

r 2
Φ−V (r )Φ(r ) = 0.

Then, as r →∞,
Φ(r ) = c0e−kr +o(e−kr ),

with some c0 6= 0.

Remark: Assuming faster decay for V , say V = o(r−3), we can explicitly calculate the next
asymptotic term, namely

Φ(r ) = c0[e−kr + α

2k
r−1e−kr ]+o(r−1e−kr ).

Proof. At issue here is the construction of a complete system of linear independent Jost solu-
tions for (4.2). We will show that there are solutions g1 = e−kr +o(e−kr ), g2 = ekr +o(ekr ) of (4.2).
Once this is done, the proof follows easily, since this is a complete system and any solution, and
in particularΦ, is a linear combination of g1, g2. SinceΦ, g1 are localized, whereas g2 is growing
at ∞, it follows that Φ= c0g1, which is the claim.
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In order to construct g1 (construction of g2 is identical), recall the formula for solutions of
the inhomogeneous problem −h′′+k2h =G , which takes the form

(4.3) h(r ) =− 1

2k

∫ ∞

r
ek(s−r )G(s)d s + 1

2k

∫ ∞

r
e−k(s−r )G(s)d s.

We will show that the ansatz g1(r ) = e−kr +Ψ1(r ) produces a solution with the required bounds.
Note thatΨ1 solves

−Ψ′′
1(r )+k2Ψ1(r )+

( α
r 2

−V (r )
)

(e−kr +Ψ1(r )) = 0

Thus, we need to solve the integral equation

Ψ1(r ) =− 1

2k

∫ ∞

r
ek(s−r )

(
V (s)− α

s2

)
(e−ks +Ψ1(s))d s + 1

2k

∫ ∞

r
e−k(s−r )

(
V (s)− α

s2

)
(e−ks +Ψ1(s))d s.

Introduce ψ1(r ) := ekrΨ1(r ), so

(4.4) ψ1(r ) =− 1

2k

∫ ∞

r

(
V (s)− α

s2

)
(1+ψ1(s))d s + e2kr

2k

∫ ∞

r
e−2ks

(
V (s)− α

s2

)
(1+ψ1(s))d s.

The linear operator

Λ f (r ) =− 1

2k

∫ ∞

r

(
V (s)− α

s2

)
f (s)d s + e2kr

2k

∫ ∞

r
e−2ks

(
V (s)− α

s2

)
f (s)d s.

clearly has small norm, when acting on the space L∞(A,∞) for A >> 1, say

‖Λ‖L∞(A,∞)→L∞(A,∞) ≤ 1

2
.

Thus, we can resolve (4.4) as follows

ψ= (I d −Λ)−1[− 1

2k

∫ ∞

r

(
V (s)− α

s2

)
d s + e2kr

2k

∫ ∞

r
e−2ks

(
V (s)− α

s2

)
d s].

It follows that

‖ψ‖L∞(A,∞) ≤ 2‖− 1

2k

∫ ∞

r

(
V (s)− α

s2

)
d s + e2kr

2k

∫ ∞

r
e−2ks

(
V (s)− α

s2

)
d s‖L∞

r (A,∞).

Since V ∈ L1(A,∞), for large enough A, it follows that

‖ψ‖L∞(A,∞) ≤Ck,α

∫ ∞

A
[|V (s)|+ |α|

s2
]d s ≤Ck,α(A−1 +

∫ ∞

A
|V (s)|).

so the result is established. If V has even faster decay, say o(s−3), we can compute explicitly the
next order term for ψ to be

− 1

2k

∫ ∞

r

(
V (s)− α

s2

)
d s = α

2k
r−1 +o(r−1).

Thus, we have the asymptotic formula (for large r )

Φ(r ) = e−kr + α

2k
r−1e−kr +o(r−1e−kr ).

�
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Next, we deal with the question of the asymptotic behavior at ∞ of bell-shaped solutions of
(1.2). Clearly, Lemma 5 will be helpful in this regard. Indeed, a solution of (1.2) satisfies the ODE

− f ′′(r )− n −1

r
f ′(r )+ω f (r )−V (r ) f (r ) = 0,r ∈ (1,∞)

where recall V = F ( f 2). We make the transformation g (r ) := r
n−1

2 f (r ), so that g satisfies

(4.5) −g ′′(r )+ (n −1)(n −3)

4r 2
g (r )+ωg (r )−V (r )g (r ) = 0.

Note that by the bell-shapedness of f , we have 0 < f (x) < cn‖ f ‖L2 |x|−n/2, whence 0 < g (r ) <
cnr−1/2. Clearly, (4.5) is in the form (4.2), with ω= k2 and α= (n−1)(n−3)

4 .
The only missing piece is that the potential V (r ) = F ( f 2) = F (r−(n−1)g 2(r )), does not satisfy

a priori the required integrability condition V ∈ L1(1,∞). Indeed, since we only assume f ∈
L2(Rn), we can only infer a decay f (r ) ∼ |r |− n

2 , whence V (r ) ∼ min(|r |−p1n ,r−nq1 ). This does not
satisfy the condition only when min(p1, q1) ≤ 1

n , but it turns out that one can address this issue,
even for small min(p1, q1).

We set up a bootstrap argument as follows. Let

σ0 := sup{σ> 0 : f (r ) <Cσr−σ, for r > 1}.

We already know that σ0 ≥ n
2 . It remains to show that σ0 = ∞, whence the result will follow,

since V (r ) = F ( f 2(r )). ( f 2(r ))min(p1,q1) ≤CN r−N for any N and r > 1.
Assume that σ0 <∞ and let 0 <σ<σ0. Use the representation of f (as a function on Rn)

f (x) =ω n
2 −1

∫
Rn

Q(
p
ω(x − y))F ( f 2(y)) f (y)d y

Let x : |x| > 1, so we estimate (by using the boundedness of f ),

f (x) ≤
∫
|y |< |x|

2

Q(
p
ω(x − y))|F ( f 2(y)) f (y)|d y +

∫
|x|
2 <|y |

Q(
p
ω(x − y))|y |−σ(2min(p1,q1)+1)d y .

. e−
p
ω

2 |x||x|n +|x|−σ(2min(p1,q1)+1)
∫

Q(
p
ω(x − y))d y . e−

p
ω

2 |x||x|n +|x|−σ(2min(p1,q1)+1).

It follows that σ0 ≥σ(2min(p1, q1)+1) for all σ<σ0, a contradiction.

5. PROOF OF THEOREM 3

We start with the spectral analysis of L−.

5.1. The operator L−. Denote V (r ) := F ( f 2
ω(r )), so that L− =−∆+w −V (| · |). Clearly L−[ fω] =

0. We apply the spectral decomposition of Section 2.2. We obtain a sequence of operators
L−,k ,k = 0,1, . . . acting on L2

r ad , so that L−,0 < L−,1 < . . .. In order to show that L− ≥ 0, with
a simple eigenvalue at zero, it clearly suffices to show L−,0 ≥ 0, with a simple eigenvalue at zero.
Set the eigenvalue problem L−,0 for radial valued functions f

(5.1) −∂r r f − n −1

r
∂r f +ω f −V (r ) f =µ f .

Introduce a change of variables, g : g (r ) = r
n−1

2 f (r ). Note that ‖g‖L2(0,∞) = ‖ f ‖L2
r ad (Rn ) and so,

(5.1) becomes, in terms of g

(5.2) −g ′′+ (n −1)(n −3)

4r 2
g +ωg −V (r )g =µg
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Denoting V1(r ) := V (r )− (n−1)(n−3)
4r 2 , we recast the eigenvalue problem in the form −g ′′+ωg −

V1(r )g = µg , where g ∈ L2(0,∞). This is slightly unusual eigenvalue problem, but observe that

the operator L−,0 :=− d 2

dr 2 +ω−V1 is essentially self-adjoint on the Hilbert space L2(0,∞), when
considered over the domain {u : u ∈ C∞

0 (0,∞)}. See laso [31], p. 91, where similar eigenvalue
problems arise.

Clearly, L−,0[ f̃ω] = 0, f̃ω(r ) := r
n−1

2 fω(r ). We will show that this is the bottom of the spectrum.
This is essentially contained in the Sturm oscillation theorem (Lemma 2, p. 92, [31]), but we
shall give a direct proof, as the result in [31] is stated with boundary conditions at zero, which
are not relevant for us.

So, assume for a contradiction, that there is a negative eigenvalue for L−,0. That is, a function
Ψ and σ0 > 0, so that L−,0[Ψ] = −σ2

0Ψ. Following the proof of Lemma 2, p. 92, [31], let (r0,r1) :
0 ≤ r0 < r1 ≤∞, is an interval in which Ψ does not change sign, but Ψ(r0) =Ψ(r1) = 0. Without
loss of generality, Ψ|(r0,r1) > 0, otherwise take −Ψ. Note that Ψ′(r0) ≥ 0 and Ψ′(r1) ≤ 0 (in fact
Ψ′(r1) < 0, if r1 <∞). Consider

I =
∫ r1

r0

(Ψ′ f̃ω−Ψ f̃ω
′
)′dr = (Ψ′ f̃ω−Ψ f̃ω

′
)|r1

r0
=

= (Ψ′(r1) f̃ω(r1)−Ψ(r1) f̃ω
′
(r1))− (Ψ′(r0) f̃ω(r0)−Ψ(r0) f̃ω

′
(r0)) ≤ 0,

since Ψ(r0) = 0,Ψ(r1) = 0,Ψ′(r1) ≤ 0,Ψ′(r0) ≥ 0 and f̃ω > 0. On the other hand, using the fact
that L−,0[Ψ] =−σ2

0Ψ and L−,0[ f̃ω] = 0, we have

I =
∫ r1

r0

(Ψ′′ f̃ω−Ψ f̃ω
′′

)dr =σ2
0

∫ r1

r0

Ψ f̃ωdr > 0.

This is of course a contradiction, whence Ψ has only one zero, at r1 = +∞. This means that
the function Ψ≥ 0, in particular 〈Ψ, f̃ω〉 > 0. This is a contradiction again, since eigenfunctions
corresponding to different eigenvalues are orthogonal.

So, L−,0 does not have a negative eigenvalue and zero is at the bottom of σ(L−,0). Similar
argument produces a contradiction, if one assumes that there is a second, independent from
f̃ω eigenfunction, corresponding to the zero eigenvalue. Thus, zero is a simple eigenvalue for
L−,0 and hence for L−.

5.2. The operator L+. We apply the decomposition in eigenspaces of the spherical Laplacian
as described in Section 2.2. More specifically, the operators L+,k ,k = 0,1, . . . act on the space
L 2

r ad . as follows

L+,0 = −∂r r − n −1

r
∂r +ω−W1(r ),

L+,k = −∂r r − n −1

r
∂r + k(k +n −2)

r 2
+ω−V1(r ),k = 1,2, . . .

where W1(r ) := F ( f 2
ω(r ))+2F ′( f 2

ω(r )) f 2
ω(r ),r > 0. Note that 0 =L+[∇ fω] =L+[ x

r f ′
ω] is equivalent

to L+,1[ f ′
ω] = 0, since

x j

r , j = 1, . . . ,n are the first non-trivial harmonics, corresponding to the
eigenvalue (n −1).
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Since L+,0 <L+,1 < . . ., and by the assumption n(L+) = 1, we clearly must have that n(L+,0) =
1, while L+,k ≥ 0,k = 1,2, . . .. The remaining statements about L+ in Theorem 3 amount to es-
tablishing the following

K er [L+,0] = {0} or K er [L+,0] = span{Ψ0},(5.3)

L+,1 = span{ f ′
ω}, L+,1|{ f ′

ω}⊥ > 0,(5.4)

where {·}⊥ is in the sense of the Hilbert space L2
r ad ., equipped with its dot product 〈 f , g 〉 =∫ ∞

0 f (r )ḡ (r )r n−1dr .

5.2.1. Proof of (5.4). We apply the transformation g (r ) = r
n−1

2 f (r ). Thus, the eigenvalue prob-
lem, for the zero eigenvalue of L+,1 becomes

(5.5) −g ′′+ (n −1)(n +1)

4r 2
g +ωg −W1(r )g = 0.

where g ∈ L2(0,∞) :
∫ ∞

0 |g (r )|2dr < ∞. It suffices to show that there is no second localized

eigenfunction for (5.5), other than g0(r ) = r
n−1

2 f ′(r ). To look for a second eigenfunction, we
set the usual ansatz g0(r )G(r ), which leads us to the ODE G ′′g0 =−2g ′

0G ′. Solving it, we obtain
a solution G(r ) = ∫ r

1
1

g 2
0 (τ)

dτ. Note that the function g0 does not vanish in (0,∞), whence this

formula makes sense for all r ∈ (0,∞) and a second eigenfunction is in the form

g (r ) = g0(r )
∫ r

1

1

g 2
0 (τ)

dτ.

The function g is linearly independent from g0, because g (1) = 0, while g ′(1) = 1
g0(1) and so the

Wronskian is non-trivial, since det

(
g (1) g ′(1)
g0(1) g ′

0(1)

)
=−1.

We now argue that g is not localized at r =∞, hence precluding the possibility for a second
eigenfunction, corresponding to eigenvalue zero. To this end, note that for r > 2,

g (r ) = g0(r )
∫ r

1

1

g 2
0 (τ)

dτ> g0(r )
∫ r

r−1

1

g 2
0 (τ)

dτ= g0(r )

g 2
0 (r̃ )

,

for some r̃ ∈ (r −1,r ). We now show that limr→∞ g (r ) =∞. Recall that the function g0 solves
(5.5). By Lemma 5, g0(r ) = c0e−pωr +o(e−pωr ) as r →∞. Thus,

lim
r→∞g (r ) ≥ lim

r→∞
g0(r )

g 2
0 (r −1)

= lim
r→∞

e−pωr

c0e−2
p
ω(r−1)

=∞.

It follows that g0 is the only localized eigenfunction (and hence zero is simple eigenvalue for
L+,0), since every other eigenfunction must be a non-trivial linear combination of g0, g , and as
such it will not be localized at ∞.

5.2.2. Proof of (5.3). As before, with the change of variables g (r ) = r
n−1

2 f (r ), we consider the
operator

L+,0 :=−∂2
r +

(n −1)(n −3)

4r 2
+ω−W1(r ).
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More specifically, we consider L+,0 as given by the Friedrich’s extension for the form domain14

{g ∈ L2(0,∞) : g (0) = 0,
∫ ∞

0 |g ′(r )|2dr <∞,
∫ 1

0
g 2(r )

r 2 dr <∞}. Note that in order to satisfy the in-

tegrability condition at zero (that is
∫ 1

0
g 2(r )

r 2 dr < ∞), for functions in the form g = r
n−1

2 f (r ),

f ∈ L2
r ad .(Rn), we need n ≥ 3. Thus, for n ≥ 3, the spectral problem of interest, that is L+,0 on

L2
r ad .(Rn), becomes equivalent to the spectral problem for L+,0 (as a Friedrich’s extension).

Per our assumptions, n(L+) = 1, whence n(L+,0) = 1, whence n(L+,0) = 1. That is, L+,0 has a
negative eigenvalue, say−σ2

0. Similar to the arguments for L−, the next eigenfunction, sayΨ0 (if
there is one at all!) must change sign at least once in (0,∞). Clearly, this eigenfunction cannot
correspond to a negative eigenvalue, as this would contradict n(L+,0) = 1. Therefore, it may
correspond to a positive eigenvalue, in which case we are done - this implies K er [L+,0] = {0}.
Finally, there is the possibility that the eigenfunctionΨ0, corresponds to a zero eigenvalue, that
is L+,0Ψ0 = 0.

We will now show that Ψ0 cannot change sign twice. Suppose that it does changes signs
twice, say at r1,r2 : 0 < r1 < r2 < ∞. Following the argument in Lemma 1, p. 91, [31], we set

Ψ1(r ) =Ψ0χ(0,r1), Ψ2(r ) =Ψ0χ(r1,r2), Ψ3(r ) =Ψ0χ(r2,∞). Note Ψ0(0) = 0 and
∫ 1

0
|Ψ0(r )|2

r 2 dr <∞.

Clearly, Ψ j , j = 1,2,3 are continuous and piecewise C 1, but they do not belong to H 2(0,∞) =
D(− d 2

dr 2 ). On the other hand, they do belong to the form domain. For arbitrary coefficients
a j , j = 1,2,3, we compute

〈
3∑

j=1
a jΨ j ,L+,0[

3∑
j=1

a jΨ j ]〉 =
∫ ∞

0
|

3∑
j=1

a jΨ
′
j (r )|2dr + (n −1)(n −3)

4

∫ ∞

0

|∑3
j=1 a jΨ j |2

r 2
dr +

+
∫ ∞

0
(ω−W1(r ))|

3∑
j=1

a jΨ j |2dr =

=
3∑

j=1
|a j |2

∫ r j

r j−1

[
|Ψ′

j (r )|2 + (n −1)(n −3)

4

|Ψ j (r )|2
r 2

+ (ω−V1(r ))|Ψ j (r )|2
]

dr =

=
3∑

j=1
|a j |2

∫ r j

r j−1

Ψ j

[
−Ψ′′

j +
(n −1)(n −3)

4r 2
Ψ j + (ω−W1(r ))Ψ j

]
dr = 0.

It follows that on a three dimensional subspace X , sup f ∈X 〈 f ,L+,0 f 〉 ≤ 0. Hence, L+,0 has either
two negative eigenvalues (a contradiction with n(L+,0) = 1), or zero is a double eigenvalue. We
can rule out the second eigenfunction at zero (and hence contradiction with the two zero of the
function Ψ0) in a similar manner as in Section 5.2.1. Clearly Ψ satisfies L+,0[Ψ] = 0 in (r∗,∞),
whence by Lemma 5, Ψ0(r ) = c0e−pωr +o(e−pωr ) as r →∞. In particular, Ψ0(r ) 6= 0 for all large
enough r . Take r∗ to be the largest zero of Ψ0 and define a second eigenfunction, in (r∗,∞) via
the formula

Ψ(r ) =Ψ0(r )
∫ r

r∗

1

Ψ2
0(y)

d y

Similar to our arguments before, there is r̃ ∈ (r −1,r ),Ψ(r ) ≥ Ψ0(r )
Ψ2

0(r̃ )
. By the asymptotics forΨ0, it

follows that

lim
r→∞Ψ(r ) ≥ lim

r→∞
Ψ0(r )

Ψ2
0(r̃ )

=∞.

14For the case n = 3, the integrability at zero condition is clearly not necessary.
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Thus Ψ is not localized and so no eigenfunction, other than Ψ0, is localized. Thus, we have
reached a contradiction again, which was due to our previous assumption thatΨ0 has two zeros
in (0,∞). Thus, Ψ0 has exactly one zero in (0,∞).

6. SMOOTHNESS AND NON-DEGENERACY PROPERTIES OF THE NORMALIZED WAVES

We start with the proof of Proposition 3.

6.1. Proof of Proposition 3. Let us first show that there is a convergent subsequence of ϕλ+δ j .
Recall that in the course of the proof of Theorem 1, we have shown there that each minimizing
sequence has a convergent subsequence (denoted the same), in H 1 sense, to a constrained

minimizer, Φλ. It remains to show that
√

λ
λ+δ j

ϕλ+δ j is minimizing. Clearly,

‖
√

λ

λ+δ j
ϕλ+δ j ‖2 =λ.

Also,

I [

√
λ

λ+δ j
ϕλ+δ j ] = I [ϕλ+δ j ]+O[δ j ] = m(λ+δ j )+O(δ j ) → m(λ),

since the function m is continuous. It follows that
√

λ
λ+δ j

ϕλ+δ j is minimizing and hence con-

verges to what we call Φλ. Clearly,

lim
j
ϕλ+δ j = lim

j

√
λ

λ+δ j
ϕλ+δ j =Φλ,

in H 1 sense. From here on, the proof of Proposition 3 follows the scheme of the proof of The-
orem 4, except we have a discrete sequence δ j , instead of a continuous variable δ, as it ap-
proaches zero.

6.2. On the independence of ωλ on the minimizer, its continuity and m ∈ C 1(a,b). First, we
note that while ωλ might potentially depend on the minimizer, m(λ) certainly does not. On
the other hand, it was already established that m′(λ) = −ωλ

2 , whenever the derivative exists.
Thus, on the full measure subset of R+, A := {λ > 0 : m′(λ) exists}, ωλ is independent on the
minimizers, in the sense described in the statement of Theorem 4. Clearly A is a dense set as
well. Recall the formula (1.10), where we can think of the integrand ωλ as being only defined
over A , and hence independent on the minimizers. If we are able to show now that the function
ω|A∩(a,b) has a continuous extension over (a,b), then we can use (1.10) to conclude that the
derivative of m is a continuous function and hence in class C 1(a,b). Hence, we will have a
legitimate formula ωλ = −2m′(λ) for all λ ∈ (a,b). In particular, ωλ would be independent of
minimizers as a derivative of m, which is naturally independent on the minimizers, due to its
definition. Thus, it remains to establish the continuity of ω|A . In fact, it is enough to establish
the following proposition.

Proposition 7. Suppose that limδ→0+ ‖ϕλ+δ−Φ‖L2 = 0. Then, for each r : 0 < r < ∞, n = 2 or
0 < r < 2

n−2 ,n ≥ 3, we have that

(6.1) lim
δ→0+

∫
Rn
ϕ2+2r
λ+δ d x =

∫
Rn
Φ2+2r d x.
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Let us show how to obtain the continuity of λ→ω(λ) under the assumption (1.12). Suppos-
ing that (1.12) holds, we have from the proof of Proposition 3 limδ→0 ‖ϕλ+δ−Φ‖H 1∩L2qL+2 = 0 -
indeed, for every sequence δ j → 0+, we will be able to take a subsequence δ jk , so that ϕλ+δ jk

converges to Φ in H 1 ∩L2qL+2, which implies exactly that limδ→0 ‖ϕλ+δ−Φ‖H 1∩L2qL+2 = 0.
Now, the formula (3.6) for ωλ,Φ represents it as a linear combination of ‖∇Φ‖ and various

Lpk ,Lq j norms. The convergence of the Lq norms is guaranteed already, whereas Proposition 7
(more specifically (6.1)) provides the convergence of the Lp norms. With that, supposing that
for any {λ+δ j } j ⊂ (a,b), we will have proven lim j ωλ+δ j = lim j ωλ+δ j ,ϕλ+δ j

= ωλ,Φ. Thus, the

function ω|A∩(a,b) can be extended as a continuous function on (a,b).

Proof. We have already shown that limδ→0+ ‖ϕλ+δ−Φ‖L2 = 0 implies limδ→0 ‖ϕλ+δ−Φ‖H 1∩L2qL+2 =
0. The formula (6.1) is a consequence of the Sobolev embedding H 1(Rn) ,→ L2+2r (Rn), valid for
exactly the range of r specified in the statement. �

The next order of business is the concavity of m. Note that the concavity property is indepen-
dent on the assumption (1.12).

6.3. The function λ→ m(λ) is concave down. Our starting point is the inequality (3.8) estab-
lished earlier. Taking into account (3.9), it reads

(6.2) m(λ+2ε〈ϕλ,h〉+ε2‖h‖2) ≤ m(λ)−εωλ〈ϕλ,h〉+ ε2

2
〈(L+−ωλ)h,h〉+O(ε3).

Writing the same inequality with ε→−ε and adding the two yields

(6.3) m(λ+2ε〈ϕλ,h〉+ε2‖h‖2)+m(λ−2ε〈ϕλ,h〉+ε2‖h‖2) ≤ 2m(λ)+ε2〈(L+−ωλ)h,h〉+O(ε3).

This inequality is valid for all h, but we wish to apply it for the eigenfunction, corresponding
to the negative eigenvalue for L+. Recall that according to Theorem 1 and Theorem 3, L+ has
exactly one (simple) negative eigenvalue, say −σ2

λ
, with a normalized eigenfunction χλ : ‖χλ‖ =

1.
We note that 〈χλ,ϕλ〉 6= 0, since otherwise, we will get a contradiction with the property

L+|{ϕλ}⊥ ≥ 0. Take h := χλ
2〈χλ,ϕλ〉 . Applying (6.3), we obtain

(6.4) m(λ+ε+ε2‖h‖2)+m(λ−ε+ε2‖h‖2)−2m(λ) ≤−ε2ω(λ)‖h‖2 − ε2σ2
λ

4〈χλ,ϕλ〉2
+O(ε3).

We have by (1.10)

m(λ±ε+ε2‖h‖2)−m(λ±ε) =
∫ λ±ε+ε2‖h‖2

λ±ε
m′(z)d z =−1

2

∫ λ±ε+ε2‖h‖2

λ±ε
ω(z)d z

whence by the uniform continuity of ω(λ) on (a,b),

m(λ±ε+ε2‖h‖2)−m(λ±ε)+ ε2‖h‖2

2
ω(λ) =−1

2

∫ λ±ε+ε2‖h‖2

λ±ε
[ω(z)−ω(λ)]d z = ouni f or m(λ,ε2),

meaning limε→0 supλ∈(a,b)
ouni f or m (λ,ε2)

ε2 = 0. Thus, applying this in (6.4), we obtain for all ε 6= 0,

(6.5) m(λ+ε)+m(λ−ε)−2m(λ) ≤− ε2σ2
λ

4〈χλ,ϕλ〉2
+ouni f or m(λ,ε2).
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It follows that

(6.6) limsup
ε→0

sup
λ∈(a,b)

m(λ+ε)+m(λ−ε)−2m(λ)

ε2
≤− inf

λ∈(a,b)

σ2
λ

4〈χλ,ϕλ〉2
≤ 0.

We now finish with the following Lemma.

Lemma 6. Let f : (a,b) → R be a continuous function that satisfies

limsup
ε→0

sup
λ∈(a,b)

f (λ+ε)+ f (λ−ε)−2 f (λ)

ε2
≤ 0.

Then, f is concave down on (a,b).

We postpone the proof of Lemma 6 to the Appendix. Based on the lemma, we conclude that
the function m is concave down. As such, m is twice differentiable a.e.. In fact, based on (6.5),

we have that m′′(λ) ≤ − σ2
λ

4〈χλ,ϕλ〉2 for almost all λ. Thus, for all points of differentiability of ω

(which is a.e. in λ),

(6.7) ω′(λ) =−2m′′(λ) ≥ σ2
λ

2〈χλ,ϕλ〉2
> 0.

6.4. The weak non-degeneracy forϕλ. In this section, we establish that under the assumptions
in Theorem 4, we have that ϕλ ⊥ K er [L+]. In view of Theorem 3, this is something to worry
about only in case where the (strong) non-degeneracy does not hold, namely when K er [L+] =
span{∂1ϕλ, . . . ,∂nϕλ,Ψ0}. Indeed, we trivially have that ϕλ ⊥ span{∂1ϕλ, . . . ,∂nϕλ}. Thus, we
only need to show that ϕλ⊥Ψ0, (if such a function exists in the first place!).

To this end, starting with the elliptic problem (1.2), which ϕλ satisfies, with ω = ωλ. Let λ ∈
(a,b) be a point of differentiability 15 for ω(λ). Let δ > 0 be so small that λ+δ ∈ (a,b). We will
write the equations forϕλ andϕλ+δ respectively and eventually, we will take their difference. In
doing so, it is convenient to introduce the notation

(6.8) ϕλ+δ =ϕλ+δ
ϕλ+δ−ϕλ

δ
=:ϕλ+δZδ,

and to prepare a few calculations. First, the key assumption (1.12) reads limδ→0δ‖Zδ‖L2 = 0.
Since the functions ϕλ,ϕλ+δ are bounded, we have that for each r ∈ (2,∞),

δ‖Zδ‖Lr (Rn ) ≤ (δ‖Zδ‖L∞)1− 2
r (δ‖Zδ‖L2 )

2
r → 0,

as δ→ 0+. Next, for each power p > 0, we use the first order expansion

ϕ
2p+1
λ+δ =ϕ2p+1

λ
+δZδ(2p +1)ϕ2p

λ
+Eδ,λ;p ,

where the error term satisfies

(6.9) |Eδ,λ,p (x)| ≤C

{
ϕ

2p−1
λ

(δZδ)2 δ|Zδ(x)| ≤ ϕλ(x)
10

(δZδ)2p+1 δ|Zδ(x)| ≥ ϕλ(x)
10

.

It may appear that there are terms with exponential growth in the spatial variables, such as
ϕ

2p−1
λ

, when p < 1
2 (recall that p is generally small in our assumptions). This turns out not to be

the case. As we know while ϕλ ∼ e−pωλ|x|, |Zδ| ≤ e−min(
p
ωλ,

p
ωλ+δ)|x|. So, for example Eδ,λ,p has

decay rate
|Eδ,λ,p | ≤Ce−[2(min

p
ωλ,

p
ωλ+δ)+(2p−1)

p
ωλ]|x|,

15which applies to a.e. point
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or about e−(2p+1)
p
ωλ|x|, since δ<< 1 and λ is a point of continuity for ωλ.

Plugging in the formula (6.8) in (1.2) and taking differences and dividing by δ, we obtain

(6.10) L+[Zδ]+ ωλ+δ−ωλ
δ

(ϕλ+δZδ)−δ−1Eδ,λ = 0,

where Eδ,λ =
∑K

k=1 ak Eδ,λ,pk −
∑L

l=1 bl Eδ,λ,ql .
We now take a decomposition of Zδ across the spectrum of L+. Since Zδ is radial, the only

non-trivial projection onto K er [L+] is potentially only over Ψ0, so we have

Zδ = 〈Zδ,Ψ0〉Ψ0 + zδ =: a(δ)Ψ0 + zδ,

where zδ ⊥ K er L+, so in particular zδ ⊥Ψ0. Note that since δ2a2(δ)+δ2‖zδ‖2 = δ2‖Zδ‖2
L2 → 0,

it follows that limδ→0+δa(δ) = 0 and limδ→0+δ‖zδ‖ = 0. In view of that and our earlier argu-
ments, it follows that for each r ∈ (2,∞), limδ→0+δ‖zδ‖Lr = 0 as well. In addition, the exponen-
tial bounds for Zδ and Ψ0 carry over to zδ. We collect the estimates for a(δ), zδ in the following

(6.11) δ|zδ(x)| ≤Ce−
p

min(ωλ,ωλ+δ)|x|; lim
δ→0+

δ‖zδ‖Lr = 0,2 ≤ r <∞; lim
δ→0+

δa(δ) = 0,

where C is independent on δ> 0.
Since L+[Zδ] =L+[zδ], we have from (6.10)

(6.12) zδ =L −1
+ P{Ψ0}⊥[−ωλ+δ−ωλ

δ
(ϕλ+δZδ)+δ−1Eδ,λ]

Since D(L+) = H 2(Rn), L −1+ P{Ψ0}⊥ : L2 → H 2(Rn) and we obtain the bound

(6.13) ‖zδ‖H 2 ≤C

( |ωλ+δ−ωλ|
δ

(‖ϕλ‖+δ‖Zδ‖)+δ−1‖Eδ,λ‖L2

)
We now need appropriate estimate for δ−1‖Eδ,λ‖L2 .

Lemma 7.

δ−1‖Eδ,λ‖L2 ≤ o(1)‖zδ‖H 2 +Cδa2(δ).

Proof. In the regime δ|Zδ| ≤ ϕλ
10 , the function δ−1|Eδ,λ| is estimated as follows

δ−1‖Eδ,λ‖L2(δ|Zδ|≤ϕλ
10 ) ≤

K∑
k=1

|ak |‖ϕ2pk−1δ[a2(δ)Ψ2
0 +2a(δ)Ψ0zδ+ z2

δ]‖L2 +

+
L∑

l=1
|bl |‖ϕ2ql−1δ[a2(δ)Ψ2

0 +2a(δ)Ψ0zδ+ z2
δ]‖L2 ≤Cδa2(δ) sup

r∈p1,...pK ;q1,...qL

‖Ψ2
0ϕ

2r−1
λ ‖L2 +

+ Cδ|a(δ)| sup
r∈p1,...pK ;q1,...qL

‖Ψ0zδϕ
2r−1
λ ‖L2 +Cδ sup

r∈p1,...pK ;q1,...qL

‖ϕ2r−1
λ z2

δ‖L2 .

Clearly, sinceΨ0,ϕλ ∼ e−pωλ|x|+o(e−pωλ|x|), we have that ϕ−1
λ
Ψ0 is a bounded function. Hence

‖Ψ2
0ϕ

2r−1
λ

‖L2 <∞,‖Ψ0ϕ
2r−1
λ

‖L∞ <∞. For the last term, choose any σ : 2 < σ<∞, so that there

is the Sobolev embedding H 2(Rn) ,→ Lσ(Rn), i.e. σ< 2n
n−2 . We have

δ‖ϕ2r−1
λ z2

δ‖L2 ≤ ‖zδ‖Lσ‖ϕ2r−1
λ δzδ‖Lσ1 ≤C‖zδ‖H 2‖ϕ2r−1

λ δzδ‖Lσ1 ,

where σ1 : 1
σ
+ 1
σ1

= 1
2 . Thus,

‖ϕ2r−1
λ δzδ‖Lσ1 ≤ ‖|δzδ|(1−θ)‖Lσ1‖ϕ2r−1

λ |δzδ|θ‖L∞ ≤C‖δzδ‖
1

1−θ
Lσ1(1−θ) = o(1).
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where θ ∈ (0,1) is designed so that the L∞ term is bounded. This is possible, since there is the
estimate

ϕ2r−1
λ |δzδ|θ ≤Ce−(2r−1)

p
ωλ|x|e−θ

p
min(ωλ,ωλ+δ)|x|.

which can be made exponentially decaying at ∞ (and hence bounded), provided 1 > θ > 1−
2r and δ is sufficiently small. Combining it all together, in view of (6.11), we have shown the
required estimate for δ−1‖Eδ,λ‖L2(δ|Zδ|≤ϕλ

10 ).

The estimate for δ−1‖Eδ,λ‖L2(δ|Zδ|>ϕλ
10 ) is in fact simpler. More specifically, note that since

limδ→0+δa(δ) = 0, we have that for all small enough δ > 0, δa(δ)Ψ0 << ϕλ, whence δ|zδ| ≥
1
2δ|Zδ| ≥

ϕλ
10 .

For every r ∈ {p1, . . . pK ; q1, . . . qL}, we estimate by Hölder’s with σ : 0 < σ−2 << 1 and r1 : 1
2 =

1
σ
+ 1
σ1

‖zδ(δzδ)2r ‖L2 ≤ ‖zδ‖Lσ(δ‖zδ‖L2σ1r )2r

We now select σ so close to 2 (and consequently σ1 can be made as big as we wish), so that
2σ1r > 2. As a consequence, ‖zδ‖Lσ(δ‖zδ‖L2σ1r )2r = o(1)‖zδ‖H 2(Rn ), according to (6.11).

�

Going back to (6.13), we see that for all small enough δ, and taking into account that λ is a
point of differentiability for ωλ (and hence limδ→0+

ωλ+δ−ωλ
δ =ω′

λ
) there is the bound

‖zδ‖H 2 ≤Cλ(|ω′(λ)|+o(1)‖zδ‖H 2 +δa2(δ)).

Since we can hide o(1)‖zδ‖H 2 behind the left hand side, we arrive at the bound, in a schematic
form,

(6.14) ‖zδ‖H 2 ≤Cδa2(δ)+O(1) = o(1)|a(δ)|+O(1),

in view of limδ→0+δa(δ) = 0. We now show that this by itself implies the weak non-degeneracy
of ϕλ. Compute

(6.15) δ2‖Zδ‖2 = 〈ϕλ+δ−ϕλ,ϕλ+δ−ϕλ〉 = 2λ+δ−2〈ϕλ+δ,ϕλ〉 = δ(1−2〈Zδ,ϕλ〉).

On the other hand,
δ‖Zδ‖2 = δa2(δ)+δ‖zδ‖2,

while
1−2〈Zδ,ϕλ〉 = 1−2a(δ)〈Ψ0,ϕλ〉−2〈zδ,ϕλ〉.

It follows that

(6.16) 2a(δ)〈Ψ0,ϕλ〉 = 1−2〈zδ,ϕλ〉−δa2(δ)−δ‖zδ‖2

From (6.14), |〈zδ,ϕλ〉| ≤Cλ‖zδ‖ ≤Cλ(o(δ)|a(δ)|+O(1)) and δ‖zδ‖2 ≤ o(δ)|a(δ)|+O(δ). Hence,

2a(δ)〈Ψ0,ϕλ〉 = o(δ)|a(δ)|+O(1),

So, if it happens that 〈Ψ0,ϕλ〉 6= 0 (i.e. we assume weak degeneracy for a contradiction), we must
have a(δ) = O(1). In that case, take a dot product of (6.10)with Ψ0, so that 〈L+zδ,Ψ0〉 = 0. We
have ∣∣∣ωλ+δ−ωλ

δ

∣∣∣ |〈Ψ0,ϕλ〉| ≤
∣∣∣ωλ+δ−ωλ

δ

∣∣∣δ|〈Zδ,Ψ0〉|+δ−1|〈Eδ,λ,Ψ0〉|.
Note that the right hand side is o(1), if a(δ) = O(1). On the other hand, this is contradiction,
since

lim
δ→0+

∣∣∣ωλ+δ−ωλ
δ

∣∣∣ |〈Ψ0,ϕλ〉| = |ω′(λ)||〈Ψ0,ϕλ〉| > 0,
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according to (6.7). This leads us to the conclusion that 〈Ψ0,ϕλ〉 = 0, which is the weak non-
degeneracy of ϕλ. Let us record, for future reference, the identity that follows from (6.15), in
view of the fact that 〈Ψ0,ϕλ〉 = 0,

(6.17) 2〈zδ,ϕλ〉 = 1−δa2(δ)−δ‖zδ‖2.

6.5. On the differentiability of the map λ→ ϕλ in the non-degenerate case. In this section,
we assume that the waveϕλ is non-degenerate, that is K er [L+] = span{∂1ϕλ, . . . ,∂nϕλ}. Under
these assumptions for the kernel, we can essentially run the same argument as in the previous
section, by assuming a(δ) = 0 or equivalently Zδ = zδ. In particular, Lemma 7 applies to yield

(6.18) δ−1‖Eδ,λ‖L2 ≤ o(1)‖Zδ‖H 2 .

From (6.13), combined with (6.18), we obtain

‖Zδ‖H 2 ≤C |ω′(λ)|‖ϕλ‖+o(1)‖Zδ‖H 2 +o(1).

All in all, it follows that limsupδ→0 ‖Zδ‖H 2 ≤C |ω′(λ)|‖ϕλ‖ <∞. Using this information, we can
actually take limits as δ→ 0 in (6.10). Indeed, applying L −1+ to it16

Zδ+ω′(λ)L −1
+ ϕλ+oL2 (1)+O(δ‖Zδ‖H 2 ) = 0

Thus,
lim
δ→0

‖Zδ+ω′(λ)L −1
+ ϕλ‖L2 = 0.

This means that the function ϕ : (a,b) → L2(Rn) is differentiable, at least at the points of differ-
entiability of ω. In fact,

∂λϕλ =−ω′(λ)L −1
+ ϕλ.

Finally,

〈L −1
+ ϕλ,ϕλ〉 =− 1

ω′(λ)
〈∂λϕλ,ϕλ〉 =− 1

2ω′(λ)
∂λ‖ϕλ‖2 =− 1

2ω′(λ)
< 0,

6.6. Differentiability of λ→ ϕλ in the weakly non-degenerate case. We have already estab-
lished the weak non-degeneracy of ϕλ, when ω′(λ) exists. For δ> 0, we have the identity

δ−1‖ϕλ+δ−ϕλ‖2 = δ‖Zδ‖2 = δa2(δ)+δ‖zδ‖2,

whence the assumption (1.13) implies that limδ→0δa2(δ) = 0 = limδ→0δ‖zδ‖2. This simplifies
matters quite a bit - by combining (6.13) and the estimate in Lemma 7, we obtain

‖zδ‖H 2 ≤C |ω′(λ)|+o(1)+Cδ(|a(δ)|+‖zδ‖L2 )+Cδa2(δ)+o(1)‖zδ‖L2 .

Thus, ‖zδ‖H 2 =O(1). In particular by Lemma 7, δ−1Eδ,λ = o(1). We now easily obtain, by taking
limit as δ→ 0 in (6.12),

lim
δ→0

‖zδ+ω′(λ)L −1
+ [ϕλ]‖ = 0

In particular, the (L2(Rn) valued) function λ→ϕλ is differentiable, and

∂λϕλ =−ω′(λ)L −1
+ [ϕλ].

Also,
lim
δ→0

〈zδ,ϕλ〉 =−ω′(λ)〈L −1
+ [ϕλ],ϕλ〉.

while by virtue of (6.16)(recall 〈Ψ0,ϕλ〉 = 0), we have limδ→0〈zδ,ϕλ〉 = 1
2 .

16this is justified since all the terms appearing in (6.10) are radial and hence orthogonal to K er [L+] by the
non-degeneracy assumption
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6.7. Non-degeneracy of ϕλ: Proof of Proposition 4. According to Theorem 3, we only need to
rule out the existence of a radial eigenfunction Ψ0 in K er [L+], which vanishes at exactly one
point, say r∗ ∈ (0,∞).

Recall ϕ⊥ K er [L+]. A direct inspection establishes the well-known identity

(6.19) L+[
n∑

j=1
x j∂ jϕ] =−2∆ϕ.

This shows that ∆ϕ⊥ K er [L+] as well. In addition,

L+[ϕ] =−2F ′(ϕ2)ϕ3,

while from the profile equation F (ϕ2)ϕ=−∆ϕ+ωϕ⊥ K er [L+]. It follows that F ′(ϕ2)ϕ3,F (ϕ2)ϕ⊥
K er [L+].

We will show that in the three examples, (1.14), (1.15) and (1.16), listed in Proposition 4, this
allows us to rule out Ψ0. Recall that Ψ0(r ) > 0,r ∈ (0,r∗), Ψ0(r ) < 0,r ∈ (r∗,∞). Assume (1.14).
Choose c0 > 0, so that c0

∑K
k=1 akϕ

2pk
λ

(r∗) = 1. Consider the function

h(r ) := c0F (ϕ2)ϕ−ϕ.

On one hand, h ⊥ K er [L+], as linear combination of two functions in K er [L+]⊥. On the other
hand, since ϕ is bell-shaped17 for r ∈ (0,r∗),

h(r ) =ϕ(r )(c0

K∑
k=1

akϕ
2pk (r )−1) >ϕ(r )(c0

K∑
k=1

akϕ
2pk (r∗)−1) = 0.

For r ∈ (r∗,∞), we have the opposite inequality, since

h(r ) =ϕ(r )(c0

K∑
k=1

akϕ
2pk (r )−1) <ϕ(r )(c0

K∑
k=1

akϕ
2pk (r∗)−1) = 0.

Clearly, 〈h,Ψ0〉 =
∫ r∗

0 h(r )Ψ0(r )r n−1dr + ∫ ∞
r∗ h(r )Ψ0(r )r n−1dr > 0, in contradiction with h ⊥

K er [L+] and in particular h ⊥Ψ0.
The proof in the cases of (1.15) and (1.16) follows the same logic, but it is slightly more in-

volved. The conditions F ′(ϕ2)ϕ3,F (ϕ2)ϕ⊥ K er [L+] read

F (ϕ2)ϕ=
K∑

k=1
akϕ

2pk+1 −bϕ2q+1 ⊥ K er [L+]

F ′(ϕ2)ϕ3 =
K∑

k=1
(2pk +1)akϕ

2pk+1 −b(2q +1)ϕ2q+1 ⊥ K er [L+]

Taking a linear combination (2q + 1)F (ϕ2)ϕ− F ′(ϕ2)ϕ3, we eliminate the term ϕ2q+1 and we
obtain yet another element of K er [L+]⊥, namely

∑K
k=1 2(q −pk )akϕ

2pk+1. Clearly, in the cases
when q > pK or q < p1, we have an element of K er [L+]⊥ in the form

K∑
k=1

ãkϕ
2pk+1
λ

, ãk > 0,

which can be used to produce a contradiction with the existence ofΨ0, the same way as we did
under the assumption (1.14).

17and so strictly decreasing in (0,∞))
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7. PROOF OF THEOREMS 5, 6, 7

We first check (1.9) for the case of a purely focusing nonlinearity (1.14).

7.1. Verifification of (1.9) for focussing non-linearities. Write as before

m(λ) = inf
‖u‖2=λ

I [u] =λ inf
‖v‖2=1

[∫
|∇v |2 −λ−1

∫
G(λ|v(x)|2)d x

]
=

= λ inf
‖v‖2=1

[∫
|∇v |2 −∑

k

akλ
pk

pk +1

∫
|v |2+2pk d x

]
=:λM(λ).

Clearly, the function λ→ M(λ) is decreasing. In addition M(λ) = m(λ)
λ

< 0, since m(λ) < 0. So,
for 0 <λ1 <λ2, we have

m(λ1) =λ1M(λ1) >λ2M(λ1) >λ2M(λ2) = m(λ2).

Thus, (1.9) holds true.
We now turn our attention to the stability claims in Theorems 5, 6, 7 as the others were ex-

plained in details immediately after the statements. The spectral stability of the waves is a con-
sequence of the formulas 〈L −1+ ϕλ,ϕλ〉 = − 1

2ω′(λ) < 0, the fact that n(L+) = 1,n(L−) = 0 and the
index theory, introduced in Section 2.3, more specifically Proposition 6.

Orbital stability follows from the end of the same proposition, once we take into account the
non-degeneracy of the waves ϕλ, the local invertibility of the map λ→ωλ and the smoothness
of λ → ϕλ, stated in Theorem 4. Unfortunately, there is no abstract result providing orbital
stability for the Zakharov-Kuznetsov model, due to the failure of a key assumption in Theorem
5.2.11 in [17], namely the invertibility of J = ∂x1 does not hold.

In the section below however, we provide a direct proof of this fact, by adapting slightly the
Benjamin’s method, [1]. Similar, albeit slightly more elaborated method can be applied to pro-
duce a direct proof of the orbital stability of the NLS equation, instead of referring to Theorem
5.2.11, [17], but we will not do so here.

7.2. Orbital stability for the Zakharov-Kuznetsov models. The local well-posedness theory for
the ZK, (1.3) follows by classical semigroup theory in the energy space H 1(Rn), under the as-
sumptions for L2 sub-critical powers, as considered herein. This is then upgraded to global
well-posedness theory in H 1(Rn), thanks to the conservation laws

H [u] =
∫

Rn
|∇u(x)|2 −

∫
Rn

G(|u(x)|2)d x,P (u) =
∫

Rn
|u(x)|2d x.

Thus, we are reduced to showing the following proposition.

Proposition 8. Let ϕ be a smooth wave, satisfying

(7.1) −∆ϕ+ωϕ−F (ϕ2)ϕ= 0

and the following assumptions:

• The operator L+ =−∆+ω−F (ϕ2)−2F ′(ϕ2)ϕ2 satisfies L+|{ϕ}⊥ ≥ 0.
• ϕ is non-degenerate, i.e. K er [L+] = span[∂1ϕ, . . . ,∂nϕ].

Then, ϕ is orbitally stable in the sense of Definition 2.



ON THE GROUND STATES OF SECOND ORDER PDE’S WITH POWER NON-LINEARITIES 33

Remark: Clearly, the proposition above applies to the limit wavesϕ= fωλ described in Theo-
rems 5, 6, 7 as they were established to enjoy the desired properties described above. Note also
that the method that we present does not require the differentiability18 of ω.

Proof. The proof proceeds by a contradiction argument. Assuming that orbital stability does
not hold, there is a ε0 > 0 and a sequence ul →ϕ in H 1, so that the corresponding solutions

(7.2) sup
0≤t<∞

inf
r∈Rn

‖ul (t , ·)−ϕ(·− r )‖H 1 ≥ ε0.

For 0 < ε << 1, consider a neighborhood Uε in the set of all real-valued functions, which are
closed to translations of ϕλ

Uε = {u ∈ H 1
r eal (Rn) : inf

r∈Rn
||u −ϕ(·− r )||H 1 < ε}.

By Lemma 3.2, [11], there exists ε0(ϕ) > 0, so that for all 0 < ε< ε0(ϕ), there is a unique C 1 map
β : Uε 7→R, such that

(7.3) 〈u(·+β(u)),∂ jϕ〉 = 0, j = 1, . . . ,n.

Note that β(ϕ) = 0. Since we need ε< min(ε0(ϕ),ε0), take the new ε0 to be the minimum of the
ε0,ε0(ϕ). Introduce the total energy functional E (u) = H (u)+ωP (u). In terms of H ,P the
profile equation (7.1) reads

E ′[ϕ] =H ′(ϕ)+ωP ′(ϕ) = 0.

Let

εl := |E (ul (t ))−E (ϕ)|+ |P (ul (t ))−P (ϕ)|,
which is conserved in time. Note that liml εl = 0, since liml ‖ul −ϕ‖H 1 = 0.

By the continuity of the solution map and the map β, we have that there exists tl > 0, so that
for t ∈ (0, tl ), ‖ul (t , ·)−ϕ‖H 1 < ε

2 and β(ul (t )) is so close to β(ϕ) = 0, that

‖ϕ−ϕ(·−β(ul (t )))‖H 1 < ε

2
.

Consequently,

‖ul (t , ·+β(ul (t )))−ϕ‖H 1 = ‖ul (t , ·)−ϕ(·−β(ul (t )))‖H 1 ≤
≤ ‖ul (t , ·)−ϕ‖H 1 +‖ϕ−ϕ(·−β(ul (t )))‖H 1 < ε

2
+ ε

2
= ε.

With that in mind, take

T ∗
l = sup{τ0 : sup

0<τ<τ0

‖ul (τ, ·+β(ul ))−ϕ(·)‖H 1 < ε}.

The previous calculation shows T ∗
l ≥ tl > 0. We aim at showing that for all sufficiently small ε

and for all large enough l , T ∗
l =∞, which will provide the sought contradiction with (7.2). We

henceforth work with t ∈ (0,T ∗
l ). Denote

ψl (t , ·) = ul (t , ·+β(ul ))−ϕ(·) =µl (t )ϕ+ηl (t , ·), ηl ⊥ϕ.

We have that

P (ul (t )) = P (ϕ)+2〈ϕ,µlϕ+ηl 〉+‖ψl‖2
L2 =P (ϕ)+2µl‖ϕ‖2 +‖ψl‖2

L2 .

18which is on the other hand used already in the proof of the non-degeneracy of the waves
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It follows that 2µl‖ϕ‖2 =P (ul )−P (ϕ)−‖ψl‖2
L2 , whence

(7.4) |µl (t )| ≤
|P (ul )−P (ϕ)|+‖ψl‖2

L2

2‖ϕ‖2
≤C (εl +‖ψl‖2

L2 ).

But E ′(ϕ) = 0. So expansion in Taylor’s and various Sobolev embedding estimates yield the
formula

E (ul (t ))−E (ϕ) = E (ul (t , ·+β(ul (t ))))−E (ϕ) = E (ϕ+ψl )−E (ϕ) =
= 1

2
〈L+ψl ,ψn〉+O(‖ψl‖3

H 1 ) =

= 1

2
〈L+ηl ,ηn〉+ 1

2
(µ2

l 〈L+ϕ,ϕ〉+2µl 〈L+ϕ,ηl 〉)+O(‖ψl‖3
H 1 ).

By construction, ηl ⊥ϕ. In addition, from (7.3), we have for all j = 1,2, . . .n,

〈ηl ,∂ jϕ〉 = 〈ul (t , ·+β(ul (t )))−ϕ−µlϕ,∂ jϕ〉 = 0.

So, it turns out that ηl ⊥ span{ϕ,∇ϕ}. But recall that we have assumed L+|{ϕ}⊥ ≥ 0. In addition,
by the non-degeneracy assumption, K er [L+] = span[∇ϕ]. Thus,

L+|span{ϕ,∇ϕ}⊥ ≥ κ> 0.

In particular,

(7.5) 〈L+ηl ,ηl 〉 ≥ κ‖ηl‖2
H 1

Plugging this information into the expression for E (ul )−E (ϕ) = E (ul (t ))−E (ϕ), we arrive at

(7.6)
κ

2
‖ηl‖2

H 1 ≤Cεl +C‖ψl‖3
H 1 .

By the definition of ηl and (7.4), we have however

(7.7) ‖ηl‖H 1 ≥ ‖ψl −µlϕ‖H 1 ≥ ‖ψl‖H 1 −|µl |‖ϕ‖H 1 ≥ ‖ψl‖H 1 −C (εl +‖ψl‖2
H 1 ).

We now select ε so small that Cε< min( 1
100 , κ64 ), for any C that appears in the argument.

We claim that for all large enough n, ‖ψl (t )‖H 1 < ε
1
4
l , for t ∈ (0,T ∗

l ). Suppose not - this will

then yield a subsequence, denoted the same, so that ‖ψl (τl )‖H 1 ≥ ε
1
4
l for some τl ∈ (0,T ∗

l ). Note
that by the definition of T ∗

l , we still have ‖ψl (τl )‖H 1 ≤ ε. From (7.7), we have now, for large
enough n,

(7.8) ‖ηl (τl )‖H 1 ≥ 1

2
‖ψl (τl )‖H 1 −Cεl ≥

1

4
‖ψl (τl )‖H 1

since by the choice of ε, we have ‖ψl (τl )‖H 1 −C‖ψl (τl )‖2
H 1 ≥ 1

2‖ψl (τl )‖H 1 (since Cε < 1
100 ). In

addition, 1
2‖ψl (τl )‖H 1 −Cεl ≥ 1

4‖ψl (τl )‖
H

α
2

since ε
1
4
l >> εl . Using this in (7.6) yields

(7.9)
κ

32
‖ψl (τl )‖2

H 1 ≤Cεl +C‖ψl (τl )‖3
H 1 ≤Cεl +

κ

64
‖ψl (τl )‖2

H 1

It follows that
κ

64
‖ψl (τl )‖2

H 1 ≤Cεl ,

which is a contradiction with ‖ψl (τl )‖H 1 ≥ ε
1
4
l for large l . Thus, for large l , ‖ψl (t )‖H 1 < ε

1
4
l for

t ∈ (0,T ∗
l ). But this exactly means that for all large l , T ∗

l =∞, whence we arrive at a contradiction
with (7.2).
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�

APPENDIX A. POHOZAEV

Proposition 9. Any weak solution f ∈ H 1(Rn)∩L∞(Rn) of (1.2) satisfy

‖∇ fω‖2 +ω‖ fω‖2 −
∫

Rn
F ( f 2

ω(x)) f 2
ω(x)d x = 0,(A.1)

(n −2)‖∇ fω‖2 +ωn‖ fω‖2 −n
∫

Rn
G( f 2

ω(x))d x = 0.(A.2)

Proof. We first verify it for classical solutions. The relation (A.1) follows by taking dot product of
(1.2) with fω. For (A.2), take dot product with

∑n
j=1 x j∂ j f . Since,

〈−∆ f ,
n∑

j=1
x j∂ j f 〉 =

n∑
j=1

[
∑
k 6= j

∫
Rn

x j∂k f ∂ j k f d x −
∫

Rn
∂ j f ∂ j j f x j d x] =−n −2

2
‖∇ f ‖2.

−
n∑

j=1

∫
F ( f 2(x)) f (x)x j∂ j f (x)d x = n

2

∫
G( f 2)d x,

n∑
j=1

∫
x j f (x)∂ j f (x)d x =−n

2
‖ f ‖2.

we conclude (A.2).
For weak solutions, take dot products with f χ(x/N ) and

∑n
j=1 x j∂ j f χ(|x|/N ) respectively,

where χ is a C∞
0 function, supported in (−2,2), so that χ(r ) = 1 : |r | < 1. After integration by

parts and taking limN→∞ we get again (A.1) and (A.2).
�

APPENDIX B. CONCAVITY LEMMA

We prove Lemma 6. Assume that f is not concave. Then, since it is continuous, it is not
“concave” with θ = 1

2 . That is, there is λ0 ∈ (a,b) and ε0,δ0 > 0, so that λ0 ±ε0 ∈ (a,b),

f (λ0 +ε0)+ f (λ0 −ε0) ≥ 2 f (λ0)+δ0.

We claim that at least one of the following three inequalities will hold true

f (λ0 +ε0)+ f (λ0)−2 f (λ0 + ε0

2
) ≥ δ0

4
,

f (λ0 −ε0)+ f (λ0)−2 f (λ0 − ε0

2
) ≥ δ0

4
,

f (λ0 + ε0

2
)+ f (λ0 − ε0

2
)−2 f (λ0) ≥ δ0

4
.

Indeed, assuming all three are false, add the first two to twice the third one. We obtain

f (λ0 +ε0)+ f (λ0 −ε0)−2 f (λ0) < δ0,

which is a contradiction. Thus, we have shown that inside (λ0 − ε0,λ0 + ε0) there is an interval,
with half the length, on which f is not concave with θ = 1

2 . Continuing in this fashion, we
construct a sequence of nested intervals I j = [λ j − ε0

2 j ,λ j + ε0

2 j ], on which there is the inequality

f (λ j + ε0

2 j
)+ f (λ j − ε0

2 j
)−2 f (λ j ) ≥ δ0

22 j
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Since λ j → λ̃=∩∞
j=0I j ⊂ (a,b), we obtain as a consequence

limsup
j

f (λ j + ε0

2 j )+ f (λ j − ε0

2 j )−2 f (λ j )(
ε0

2 j

)2 ≥ δ0

ε2
0

> 0.

This is however in contradiction with the assumption in Lemma 6.

APPENDIX C. THE ONE DIMENSIONAL CASE

In this section, we provide an alternative approach to the existence and stability of solitary
waves for NLS with general non-linearity, in one spatial dimension. Note that here, we do not
necessarily restrict ourselves to normalized waves, but we in fact consider all waves.

The existence and stability of these waves is a known result, but we wanted to present a ver-
sion here, with explicit assumptions, in order to be able to directly compare with the higher
dimensional case, considered herein.

Theorem 8. Let F : (0,∞) → R be a C 1 function, so that the function H(z) := G(z)
z , where

G : G ′ = F,G(0) = 0 satisfies

• There exist z0 = z0(ω) : H(z0) = ω, so that H(z) < ω, for z ∈ (0, z0(ω)). In addition, z0 is
non-degenerate zero of H(z)−ω= 0, i.e. H ′(z0(ω)) 6= 0.

• |H(z)| ≤C |z|δ for z ∈ (0, z0(ω)) and some δ> 0.

Then, there exists a bell-shaped solution fω, with fω(0) = p
z0(ω). In addition, the function

ω → ∫ z0(ω)
0

1p
ω−H(z)

d z > 0 is differentiable for all ω > 0 and the wave fω is orbitally stable19

if and only if

∂ω

∫ z0(ω)

0

1p
ω−H(z)

d z > 0.

Proof. The profile equation is
− f ′′+ω f −F ( f 2) f = 0

This can be of course integrated once to

(C.1) f ′(x) =−
√
ω f 2(x)−G( f 2(x)), x ∈ R

An easy analysis shows that a bell-shaped solution of (C.1) exists with f (0) =p
z0(ω), f ′(0) = 0.

Note that fω must be strictly decreasing. It is easier to work with the new variable z(x) := f 2(x).
In it, the equation (C.1) becomes

(C.2) z ′(x) =−2z(x)
√
ω−H(z(x)), x ∈ R

The non-degeneracy condition H ′(z0(ω)) ensures that a solution with z(0) = z0(ω) exists, since
we have from (C.2) that for every x > 0,

x = 1

2

∫ z0(ω)

z(x)

d z

z
p
ω−H(z)

,

so the last integral needs to be convergent close to z0(ω). This is of course not the case, unless
H ′(z0(ω)) 6= 0, which we have assumed to be true.

19Outside of the points, where this quantity is zero, which is known to be a delicate issue. However, in all cases
where this has been studied in detail, nonlinear instability has been established
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The linearized operators L±, as previously defined are now second order self-adjoint oper-
ators, with domain D(L±) = H 2(R). In addition, L−[ f ] = 0 and f > 0, whence L− ≥ 0, the
zero is a simple eigenvalue and L−|{ f }⊥ > 0. By direct differentiation of the profile equation,
L+[ f ′] = 0. Since f ′ has an unique zero, at zero, Sturm-Liouville theory applies to imply that
the zero is the second smallest (simple) eigenvalue, the smallest one being strictly negative. So,
n(L+) = 1.

The classical stability theory, say Grillakis-Shatah-Strauss applies to imply that the stability of
such waves is dictated by the sign of the quantity ∂ω‖ fω‖2

L2 , namely the stability occurs exactly

when ∂ω‖ fω‖2
L2 > 0. Before we proceed with this, let us explicitly compute ‖ fω‖2

L2 . We use the z
variable again. We have, by (C.2)

‖ fω‖2 = 2
∫ ∞

0
f 2(x)d x = 2

∫ 0

z0(ω)
z

d x

d z
d z =

∫ z0(ω)

0

1p
ω−H(z)

d z.

In the last formula, it is not even clear that this is differentiable in ω, due to the (mild) singu-
larity at z0(ω). It turns out, after some elementary calculations that this is not an issue and
ω → ∫ z0(ω)

0
1p

ω−H(z)
d z is indeed differentiable in ω. The precise stability condition is exactly

∂ω
∫ z0(ω)

0
1p

ω−H(z)
d z > 0.

For the particular case of a single power non-linearity, F (z) = zp , we have H(z) = (p +1)−1zp

and we obtain
∫ z0(ω)

0
1p

ω−H(z)
d z = const .ω

1
p − 1

2 . The stability is then equivalent to ∂ω[ω
1
p − 1

2 ] > 0

or the familiar p < 2.
�
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